Loading…
Robust model reconstruction for intelligent health monitoring of tunnel structures
Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of...
Saved in:
Published in: | International journal of advanced robotic systems 2020-03, Vol.17 (2), p.172988142091083 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43 |
container_end_page | |
container_issue | 2 |
container_start_page | 172988142091083 |
container_title | International journal of advanced robotic systems |
container_volume | 17 |
creator | Xu, Xiangyang Yang, Hao |
description | Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of artificial intelligence-based robot systems for structural health monitoring of tunnels needs to be further investigated, especially for data modeling and intelligent processing for noises. This research focuses on integrated B-spline approximation with a nonparametric rank method and reveals its advantages of high efficiency and noise resistance for the automatic health monitoring of tunnel structures. Furthermore, the root-mean-square error and time consumption of the rank-based and Huber’s M-estimator methods are compared based on various profiles. The results imply that the rank-based method to model point cloud data has a comparative advantage in the monitoring of tunnel, as well as the large-area structures, which requires high degrees of efficiency and robustness. |
doi_str_mv | 10.1177/1729881420910836 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b25eb5cdb66a469c8810f5faa88792ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1729881420910836</sage_id><doaj_id>oai_doaj_org_article_b25eb5cdb66a469c8810f5faa88792ab</doaj_id><sourcerecordid>2401760228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43</originalsourceid><addsrcrecordid>eNp1UU1LxDAQDaLgsu7dY8FzNUk_kh5l8QsWhEXPIU0n3SzdZE3Sg__e1MoKgnOZmcd7b4YZhK4JviWEsTvCaMM5KSluCOZFfYYWE5RP2PmpxvUlWoWwx1MwXDVsgbZb144hZgfXwZB5UM6G6EcVjbOZdj4zNsIwmB5szHYgh7hLXGui88b2mdNZHK1N0lk1eghX6ELLIcDqJy_R--PD2_o537w-vazvN7kqCYt5gRlQ2ZS4ahUjmkKhSYMxBWBdqWTFtCxIpypaEGA1U4BTS2krCedd25XFEr3Mvp2Te3H05iD9p3DSiG_A-V5IH40aQLS0grZSXVvXsqwble6CdaWl5Jw1VLbJ62b2Onr3MUKIYu9Gb9P6gpaYsBpTyhMLzyzlXQge9GkqwWJ6hPj7iCTJZ0mQPfya_sv_AgS5iIM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401760228</pqid></control><display><type>article</type><title>Robust model reconstruction for intelligent health monitoring of tunnel structures</title><source>SAGE Open Access</source><creator>Xu, Xiangyang ; Yang, Hao</creator><creatorcontrib>Xu, Xiangyang ; Yang, Hao</creatorcontrib><description>Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of artificial intelligence-based robot systems for structural health monitoring of tunnels needs to be further investigated, especially for data modeling and intelligent processing for noises. This research focuses on integrated B-spline approximation with a nonparametric rank method and reveals its advantages of high efficiency and noise resistance for the automatic health monitoring of tunnel structures. Furthermore, the root-mean-square error and time consumption of the rank-based and Huber’s M-estimator methods are compared based on various profiles. The results imply that the rank-based method to model point cloud data has a comparative advantage in the monitoring of tunnel, as well as the large-area structures, which requires high degrees of efficiency and robustness.</description><identifier>ISSN: 1729-8806</identifier><identifier>ISSN: 1729-8814</identifier><identifier>EISSN: 1729-8814</identifier><identifier>DOI: 10.1177/1729881420910836</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial intelligence ; Structural health monitoring ; Three dimensional models</subject><ispartof>International journal of advanced robotic systems, 2020-03, Vol.17 (2), p.172988142091083</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43</citedby><cites>FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43</cites><orcidid>0000-0001-7883-9808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1729881420910836$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1729881420910836$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21945,27830,27901,27902,44921,45309</link.rule.ids></links><search><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><title>Robust model reconstruction for intelligent health monitoring of tunnel structures</title><title>International journal of advanced robotic systems</title><description>Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of artificial intelligence-based robot systems for structural health monitoring of tunnels needs to be further investigated, especially for data modeling and intelligent processing for noises. This research focuses on integrated B-spline approximation with a nonparametric rank method and reveals its advantages of high efficiency and noise resistance for the automatic health monitoring of tunnel structures. Furthermore, the root-mean-square error and time consumption of the rank-based and Huber’s M-estimator methods are compared based on various profiles. The results imply that the rank-based method to model point cloud data has a comparative advantage in the monitoring of tunnel, as well as the large-area structures, which requires high degrees of efficiency and robustness.</description><subject>Artificial intelligence</subject><subject>Structural health monitoring</subject><subject>Three dimensional models</subject><issn>1729-8806</issn><issn>1729-8814</issn><issn>1729-8814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1LxDAQDaLgsu7dY8FzNUk_kh5l8QsWhEXPIU0n3SzdZE3Sg__e1MoKgnOZmcd7b4YZhK4JviWEsTvCaMM5KSluCOZFfYYWE5RP2PmpxvUlWoWwx1MwXDVsgbZb144hZgfXwZB5UM6G6EcVjbOZdj4zNsIwmB5szHYgh7hLXGui88b2mdNZHK1N0lk1eghX6ELLIcDqJy_R--PD2_o537w-vazvN7kqCYt5gRlQ2ZS4ahUjmkKhSYMxBWBdqWTFtCxIpypaEGA1U4BTS2krCedd25XFEr3Mvp2Te3H05iD9p3DSiG_A-V5IH40aQLS0grZSXVvXsqwble6CdaWl5Jw1VLbJ62b2Onr3MUKIYu9Gb9P6gpaYsBpTyhMLzyzlXQge9GkqwWJ6hPj7iCTJZ0mQPfya_sv_AgS5iIM</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Xu, Xiangyang</creator><creator>Yang, Hao</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7883-9808</orcidid></search><sort><creationdate>20200301</creationdate><title>Robust model reconstruction for intelligent health monitoring of tunnel structures</title><author>Xu, Xiangyang ; Yang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Structural health monitoring</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of advanced robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiangyang</au><au>Yang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust model reconstruction for intelligent health monitoring of tunnel structures</atitle><jtitle>International journal of advanced robotic systems</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>17</volume><issue>2</issue><spage>172988142091083</spage><pages>172988142091083-</pages><issn>1729-8806</issn><issn>1729-8814</issn><eissn>1729-8814</eissn><abstract>Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of artificial intelligence-based robot systems for structural health monitoring of tunnels needs to be further investigated, especially for data modeling and intelligent processing for noises. This research focuses on integrated B-spline approximation with a nonparametric rank method and reveals its advantages of high efficiency and noise resistance for the automatic health monitoring of tunnel structures. Furthermore, the root-mean-square error and time consumption of the rank-based and Huber’s M-estimator methods are compared based on various profiles. The results imply that the rank-based method to model point cloud data has a comparative advantage in the monitoring of tunnel, as well as the large-area structures, which requires high degrees of efficiency and robustness.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1729881420910836</doi><orcidid>https://orcid.org/0000-0001-7883-9808</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1729-8806 |
ispartof | International journal of advanced robotic systems, 2020-03, Vol.17 (2), p.172988142091083 |
issn | 1729-8806 1729-8814 1729-8814 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b25eb5cdb66a469c8810f5faa88792ab |
source | SAGE Open Access |
subjects | Artificial intelligence Structural health monitoring Three dimensional models |
title | Robust model reconstruction for intelligent health monitoring of tunnel structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T12%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20model%20reconstruction%20for%20intelligent%20health%20monitoring%20of%20tunnel%20structures&rft.jtitle=International%20journal%20of%20advanced%20robotic%20systems&rft.au=Xu,%20Xiangyang&rft.date=2020-03-01&rft.volume=17&rft.issue=2&rft.spage=172988142091083&rft.pages=172988142091083-&rft.issn=1729-8806&rft.eissn=1729-8814&rft_id=info:doi/10.1177/1729881420910836&rft_dat=%3Cproquest_doaj_%3E2401760228%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2401760228&rft_id=info:pmid/&rft_sage_id=10.1177_1729881420910836&rfr_iscdi=true |