Loading…

Robust model reconstruction for intelligent health monitoring of tunnel structures

Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced robotic systems 2020-03, Vol.17 (2), p.172988142091083
Main Authors: Xu, Xiangyang, Yang, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43
cites cdi_FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43
container_end_page
container_issue 2
container_start_page 172988142091083
container_title International journal of advanced robotic systems
container_volume 17
creator Xu, Xiangyang
Yang, Hao
description Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of artificial intelligence-based robot systems for structural health monitoring of tunnels needs to be further investigated, especially for data modeling and intelligent processing for noises. This research focuses on integrated B-spline approximation with a nonparametric rank method and reveals its advantages of high efficiency and noise resistance for the automatic health monitoring of tunnel structures. Furthermore, the root-mean-square error and time consumption of the rank-based and Huber’s M-estimator methods are compared based on various profiles. The results imply that the rank-based method to model point cloud data has a comparative advantage in the monitoring of tunnel, as well as the large-area structures, which requires high degrees of efficiency and robustness.
doi_str_mv 10.1177/1729881420910836
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b25eb5cdb66a469c8810f5faa88792ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1729881420910836</sage_id><doaj_id>oai_doaj_org_article_b25eb5cdb66a469c8810f5faa88792ab</doaj_id><sourcerecordid>2401760228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43</originalsourceid><addsrcrecordid>eNp1UU1LxDAQDaLgsu7dY8FzNUk_kh5l8QsWhEXPIU0n3SzdZE3Sg__e1MoKgnOZmcd7b4YZhK4JviWEsTvCaMM5KSluCOZFfYYWE5RP2PmpxvUlWoWwx1MwXDVsgbZb144hZgfXwZB5UM6G6EcVjbOZdj4zNsIwmB5szHYgh7hLXGui88b2mdNZHK1N0lk1eghX6ELLIcDqJy_R--PD2_o537w-vazvN7kqCYt5gRlQ2ZS4ahUjmkKhSYMxBWBdqWTFtCxIpypaEGA1U4BTS2krCedd25XFEr3Mvp2Te3H05iD9p3DSiG_A-V5IH40aQLS0grZSXVvXsqwble6CdaWl5Jw1VLbJ62b2Onr3MUKIYu9Gb9P6gpaYsBpTyhMLzyzlXQge9GkqwWJ6hPj7iCTJZ0mQPfya_sv_AgS5iIM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401760228</pqid></control><display><type>article</type><title>Robust model reconstruction for intelligent health monitoring of tunnel structures</title><source>SAGE Open Access</source><creator>Xu, Xiangyang ; Yang, Hao</creator><creatorcontrib>Xu, Xiangyang ; Yang, Hao</creatorcontrib><description>Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of artificial intelligence-based robot systems for structural health monitoring of tunnels needs to be further investigated, especially for data modeling and intelligent processing for noises. This research focuses on integrated B-spline approximation with a nonparametric rank method and reveals its advantages of high efficiency and noise resistance for the automatic health monitoring of tunnel structures. Furthermore, the root-mean-square error and time consumption of the rank-based and Huber’s M-estimator methods are compared based on various profiles. The results imply that the rank-based method to model point cloud data has a comparative advantage in the monitoring of tunnel, as well as the large-area structures, which requires high degrees of efficiency and robustness.</description><identifier>ISSN: 1729-8806</identifier><identifier>ISSN: 1729-8814</identifier><identifier>EISSN: 1729-8814</identifier><identifier>DOI: 10.1177/1729881420910836</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial intelligence ; Structural health monitoring ; Three dimensional models</subject><ispartof>International journal of advanced robotic systems, 2020-03, Vol.17 (2), p.172988142091083</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43</citedby><cites>FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43</cites><orcidid>0000-0001-7883-9808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1729881420910836$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1729881420910836$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21945,27830,27901,27902,44921,45309</link.rule.ids></links><search><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><title>Robust model reconstruction for intelligent health monitoring of tunnel structures</title><title>International journal of advanced robotic systems</title><description>Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of artificial intelligence-based robot systems for structural health monitoring of tunnels needs to be further investigated, especially for data modeling and intelligent processing for noises. This research focuses on integrated B-spline approximation with a nonparametric rank method and reveals its advantages of high efficiency and noise resistance for the automatic health monitoring of tunnel structures. Furthermore, the root-mean-square error and time consumption of the rank-based and Huber’s M-estimator methods are compared based on various profiles. The results imply that the rank-based method to model point cloud data has a comparative advantage in the monitoring of tunnel, as well as the large-area structures, which requires high degrees of efficiency and robustness.</description><subject>Artificial intelligence</subject><subject>Structural health monitoring</subject><subject>Three dimensional models</subject><issn>1729-8806</issn><issn>1729-8814</issn><issn>1729-8814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1LxDAQDaLgsu7dY8FzNUk_kh5l8QsWhEXPIU0n3SzdZE3Sg__e1MoKgnOZmcd7b4YZhK4JviWEsTvCaMM5KSluCOZFfYYWE5RP2PmpxvUlWoWwx1MwXDVsgbZb144hZgfXwZB5UM6G6EcVjbOZdj4zNsIwmB5szHYgh7hLXGui88b2mdNZHK1N0lk1eghX6ELLIcDqJy_R--PD2_o537w-vazvN7kqCYt5gRlQ2ZS4ahUjmkKhSYMxBWBdqWTFtCxIpypaEGA1U4BTS2krCedd25XFEr3Mvp2Te3H05iD9p3DSiG_A-V5IH40aQLS0grZSXVvXsqwble6CdaWl5Jw1VLbJ62b2Onr3MUKIYu9Gb9P6gpaYsBpTyhMLzyzlXQge9GkqwWJ6hPj7iCTJZ0mQPfya_sv_AgS5iIM</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Xu, Xiangyang</creator><creator>Yang, Hao</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7883-9808</orcidid></search><sort><creationdate>20200301</creationdate><title>Robust model reconstruction for intelligent health monitoring of tunnel structures</title><author>Xu, Xiangyang ; Yang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Structural health monitoring</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of advanced robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiangyang</au><au>Yang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust model reconstruction for intelligent health monitoring of tunnel structures</atitle><jtitle>International journal of advanced robotic systems</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>17</volume><issue>2</issue><spage>172988142091083</spage><pages>172988142091083-</pages><issn>1729-8806</issn><issn>1729-8814</issn><eissn>1729-8814</eissn><abstract>Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of artificial intelligence-based robot systems for structural health monitoring of tunnels needs to be further investigated, especially for data modeling and intelligent processing for noises. This research focuses on integrated B-spline approximation with a nonparametric rank method and reveals its advantages of high efficiency and noise resistance for the automatic health monitoring of tunnel structures. Furthermore, the root-mean-square error and time consumption of the rank-based and Huber’s M-estimator methods are compared based on various profiles. The results imply that the rank-based method to model point cloud data has a comparative advantage in the monitoring of tunnel, as well as the large-area structures, which requires high degrees of efficiency and robustness.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1729881420910836</doi><orcidid>https://orcid.org/0000-0001-7883-9808</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1729-8806
ispartof International journal of advanced robotic systems, 2020-03, Vol.17 (2), p.172988142091083
issn 1729-8806
1729-8814
1729-8814
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b25eb5cdb66a469c8810f5faa88792ab
source SAGE Open Access
subjects Artificial intelligence
Structural health monitoring
Three dimensional models
title Robust model reconstruction for intelligent health monitoring of tunnel structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T12%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20model%20reconstruction%20for%20intelligent%20health%20monitoring%20of%20tunnel%20structures&rft.jtitle=International%20journal%20of%20advanced%20robotic%20systems&rft.au=Xu,%20Xiangyang&rft.date=2020-03-01&rft.volume=17&rft.issue=2&rft.spage=172988142091083&rft.pages=172988142091083-&rft.issn=1729-8806&rft.eissn=1729-8814&rft_id=info:doi/10.1177/1729881420910836&rft_dat=%3Cproquest_doaj_%3E2401760228%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-307e2a9405bc71f2e3f19002ee7d4ca57fa31dc5231e767ce031d22ba188dbd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2401760228&rft_id=info:pmid/&rft_sage_id=10.1177_1729881420910836&rfr_iscdi=true