Loading…

Models and Theoretical Analysis of SoOp Circular Polarization Bistatic Scattering for Random Rough Surface

Soil moisture is an important factor affecting the global climate and environment, which can be monitored by microwave remote sensing all day and under all weather conditions. However, existing monostatic radars and microwave radiometers have their own limitations in monitoring soil moisture with sh...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2020-05, Vol.12 (9), p.1506
Main Authors: Wu, Xuerui, Jin, Shuanggen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soil moisture is an important factor affecting the global climate and environment, which can be monitored by microwave remote sensing all day and under all weather conditions. However, existing monostatic radars and microwave radiometers have their own limitations in monitoring soil moisture with shallower depths. The emerging remote sensing of signal of opportunity (SoOp) provides a new method for soil moisture monitoring, but only an experimental perspective was proposed at present, and its mechanism is not clear. In this paper, based on the traditional surface scattering models, we employed the polarization synthesis method, the coordinate transformation, and the Mueller matrix, to develop bistatic radar circular polarization models that are suitable for SoOP remote sensing. Using these models as a tool, the bistatic scattering versus the observation frequency, soil moisture, scattering zenith angle, and scattering azimuth at five different circular polarizations (LR, HR, VR, + 45° R, and −45° R) are simulated and analyzed. The results show that the developed models can determine the optimal observation combination of polarizations and observation angle. The systematic analysis of the scattering characteristics of random rough surfaces provides an important guiding significance for the design of space-borne payloads, the analysis of experimental data, and the development of backward inversion algorithms for more effective SoOP remote sensing.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12091506