Loading…
Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach
The present study investigates the effect of mass transpiration on heat absorption/generation, thermal radiation and chemical reaction in the magnetohydrodynamics (MHD) Darcy–Forchheimer flow of a Newtonian fluid at the thermosolutal Marangoni boundary over a porous medium. The fluid region consists...
Saved in:
Published in: | Physics (Online) 2023-03, Vol.5 (1), p.24-44 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503 |
container_end_page | 44 |
container_issue | 1 |
container_start_page | 24 |
container_title | Physics (Online) |
container_volume | 5 |
creator | Mahabaleshwar, Ulavathi Shettar Mahesh, Rudraiah Sofos, Filippos |
description | The present study investigates the effect of mass transpiration on heat absorption/generation, thermal radiation and chemical reaction in the magnetohydrodynamics (MHD) Darcy–Forchheimer flow of a Newtonian fluid at the thermosolutal Marangoni boundary over a porous medium. The fluid region consists of H2O as the base fluid and fractions of TiO2–Ag nanoparticles. The mathematical approach given here employs the similarity transformation, in order to transform the leading partial differential equation (PDE) into a set of nonlinear ordinary differential equations (ODEs). The derived equations are solved analytically by using Cardon’s method and the confluent hypergeometric function. The solutions are further graphically analyzed, taking into account parameters such as mass transpiration, chemical reaction coefficient, thermal radiation, Schmidt number, Marangoni number, and inverse Darcy number. According to our findings, adding TiO2–Ag nanoparticles into conventional fluids can greatly enhance heat transfer. In addition, the mixture of TiO2–Ag with H2O gives higher heat energy compared to the mixture of only TiO2 with H2O. |
doi_str_mv | 10.3390/physics5010003 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b289949cfb1c4df4b643533739b893b0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b289949cfb1c4df4b643533739b893b0</doaj_id><sourcerecordid>2791695671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503</originalsourceid><addsrcrecordid>eNpVUU1Lw0AQXUTBUnv1HPDcup9J1lspagutXqrXZXazaVPSbNxNhPx7t1ZEYWCG4c2b93gI3RI8Y0zi-3Y_hMoEgQnGmF2gEU0pn-Yk45d_5ms0CeEQEVRgIakYofft3vqjC67uO6iTDXhodq6pkoVrPq3pKtckpfPJctC-KpIXaFxZ93HauMLW4SGZN7GgHrrKxPt523oHZn-Drkqog5389DF6e3rcLpbT9evzajFfTw0ntJtSqw0YyAwwARmRRUozC8ZAirkmmEMqokyZFwYKSspM5tzanBujOYPogY3R6sxbODio1ldH8INyUKnvhfM7BT5Kq63SNJeSS1NqYnhRcp1yJhjLmNS5ZPrEdXfmihY-ehs6dXC9j96CopkkqRRpRiJqdkYZ70Lwtvz9SrA6RaH-R8G-AAaafXs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791695671</pqid></control><display><type>article</type><title>Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach</title><source>Publicly Available Content Database</source><creator>Mahabaleshwar, Ulavathi Shettar ; Mahesh, Rudraiah ; Sofos, Filippos</creator><creatorcontrib>Mahabaleshwar, Ulavathi Shettar ; Mahesh, Rudraiah ; Sofos, Filippos</creatorcontrib><description>The present study investigates the effect of mass transpiration on heat absorption/generation, thermal radiation and chemical reaction in the magnetohydrodynamics (MHD) Darcy–Forchheimer flow of a Newtonian fluid at the thermosolutal Marangoni boundary over a porous medium. The fluid region consists of H2O as the base fluid and fractions of TiO2–Ag nanoparticles. The mathematical approach given here employs the similarity transformation, in order to transform the leading partial differential equation (PDE) into a set of nonlinear ordinary differential equations (ODEs). The derived equations are solved analytically by using Cardon’s method and the confluent hypergeometric function. The solutions are further graphically analyzed, taking into account parameters such as mass transpiration, chemical reaction coefficient, thermal radiation, Schmidt number, Marangoni number, and inverse Darcy number. According to our findings, adding TiO2–Ag nanoparticles into conventional fluids can greatly enhance heat transfer. In addition, the mixture of TiO2–Ag with H2O gives higher heat energy compared to the mixture of only TiO2 with H2O.</description><identifier>ISSN: 2624-8174</identifier><identifier>EISSN: 2624-8174</identifier><identifier>DOI: 10.3390/physics5010003</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Chemical reactions ; Darcy number ; Fractions ; Heat conductivity ; heat source/sink ; Heat transfer ; hybrid nanofluid ; Hypergeometric functions ; Investigations ; Magnetic fields ; Magnetohydrodynamics ; Marangoni convection ; MHD ; Mixtures ; Nanofluids ; Nanoparticles ; Newtonian fluids ; Nonlinear differential equations ; Partial differential equations ; Porous materials ; Porous media ; Radiation ; Reynolds number ; Schmidt number ; Silicon wafers ; Silver ; Thermal radiation ; Titanium dioxide ; Transpiration ; Velocity ; Viscosity</subject><ispartof>Physics (Online), 2023-03, Vol.5 (1), p.24-44</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503</citedby><cites>FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503</cites><orcidid>0000-0001-5036-2120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791695671/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791695671?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Mahabaleshwar, Ulavathi Shettar</creatorcontrib><creatorcontrib>Mahesh, Rudraiah</creatorcontrib><creatorcontrib>Sofos, Filippos</creatorcontrib><title>Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach</title><title>Physics (Online)</title><description>The present study investigates the effect of mass transpiration on heat absorption/generation, thermal radiation and chemical reaction in the magnetohydrodynamics (MHD) Darcy–Forchheimer flow of a Newtonian fluid at the thermosolutal Marangoni boundary over a porous medium. The fluid region consists of H2O as the base fluid and fractions of TiO2–Ag nanoparticles. The mathematical approach given here employs the similarity transformation, in order to transform the leading partial differential equation (PDE) into a set of nonlinear ordinary differential equations (ODEs). The derived equations are solved analytically by using Cardon’s method and the confluent hypergeometric function. The solutions are further graphically analyzed, taking into account parameters such as mass transpiration, chemical reaction coefficient, thermal radiation, Schmidt number, Marangoni number, and inverse Darcy number. According to our findings, adding TiO2–Ag nanoparticles into conventional fluids can greatly enhance heat transfer. In addition, the mixture of TiO2–Ag with H2O gives higher heat energy compared to the mixture of only TiO2 with H2O.</description><subject>Approximation</subject><subject>Chemical reactions</subject><subject>Darcy number</subject><subject>Fractions</subject><subject>Heat conductivity</subject><subject>heat source/sink</subject><subject>Heat transfer</subject><subject>hybrid nanofluid</subject><subject>Hypergeometric functions</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Marangoni convection</subject><subject>MHD</subject><subject>Mixtures</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Newtonian fluids</subject><subject>Nonlinear differential equations</subject><subject>Partial differential equations</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Radiation</subject><subject>Reynolds number</subject><subject>Schmidt number</subject><subject>Silicon wafers</subject><subject>Silver</subject><subject>Thermal radiation</subject><subject>Titanium dioxide</subject><subject>Transpiration</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2624-8174</issn><issn>2624-8174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1Lw0AQXUTBUnv1HPDcup9J1lspagutXqrXZXazaVPSbNxNhPx7t1ZEYWCG4c2b93gI3RI8Y0zi-3Y_hMoEgQnGmF2gEU0pn-Yk45d_5ms0CeEQEVRgIakYofft3vqjC67uO6iTDXhodq6pkoVrPq3pKtckpfPJctC-KpIXaFxZ93HauMLW4SGZN7GgHrrKxPt523oHZn-Drkqog5389DF6e3rcLpbT9evzajFfTw0ntJtSqw0YyAwwARmRRUozC8ZAirkmmEMqokyZFwYKSspM5tzanBujOYPogY3R6sxbODio1ldH8INyUKnvhfM7BT5Kq63SNJeSS1NqYnhRcp1yJhjLmNS5ZPrEdXfmihY-ehs6dXC9j96CopkkqRRpRiJqdkYZ70Lwtvz9SrA6RaH-R8G-AAaafXs</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Mahabaleshwar, Ulavathi Shettar</creator><creator>Mahesh, Rudraiah</creator><creator>Sofos, Filippos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5036-2120</orcidid></search><sort><creationdate>20230301</creationdate><title>Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach</title><author>Mahabaleshwar, Ulavathi Shettar ; Mahesh, Rudraiah ; Sofos, Filippos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Chemical reactions</topic><topic>Darcy number</topic><topic>Fractions</topic><topic>Heat conductivity</topic><topic>heat source/sink</topic><topic>Heat transfer</topic><topic>hybrid nanofluid</topic><topic>Hypergeometric functions</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Marangoni convection</topic><topic>MHD</topic><topic>Mixtures</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Newtonian fluids</topic><topic>Nonlinear differential equations</topic><topic>Partial differential equations</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Radiation</topic><topic>Reynolds number</topic><topic>Schmidt number</topic><topic>Silicon wafers</topic><topic>Silver</topic><topic>Thermal radiation</topic><topic>Titanium dioxide</topic><topic>Transpiration</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahabaleshwar, Ulavathi Shettar</creatorcontrib><creatorcontrib>Mahesh, Rudraiah</creatorcontrib><creatorcontrib>Sofos, Filippos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Physics (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahabaleshwar, Ulavathi Shettar</au><au>Mahesh, Rudraiah</au><au>Sofos, Filippos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach</atitle><jtitle>Physics (Online)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>5</volume><issue>1</issue><spage>24</spage><epage>44</epage><pages>24-44</pages><issn>2624-8174</issn><eissn>2624-8174</eissn><abstract>The present study investigates the effect of mass transpiration on heat absorption/generation, thermal radiation and chemical reaction in the magnetohydrodynamics (MHD) Darcy–Forchheimer flow of a Newtonian fluid at the thermosolutal Marangoni boundary over a porous medium. The fluid region consists of H2O as the base fluid and fractions of TiO2–Ag nanoparticles. The mathematical approach given here employs the similarity transformation, in order to transform the leading partial differential equation (PDE) into a set of nonlinear ordinary differential equations (ODEs). The derived equations are solved analytically by using Cardon’s method and the confluent hypergeometric function. The solutions are further graphically analyzed, taking into account parameters such as mass transpiration, chemical reaction coefficient, thermal radiation, Schmidt number, Marangoni number, and inverse Darcy number. According to our findings, adding TiO2–Ag nanoparticles into conventional fluids can greatly enhance heat transfer. In addition, the mixture of TiO2–Ag with H2O gives higher heat energy compared to the mixture of only TiO2 with H2O.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/physics5010003</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5036-2120</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2624-8174 |
ispartof | Physics (Online), 2023-03, Vol.5 (1), p.24-44 |
issn | 2624-8174 2624-8174 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b289949cfb1c4df4b643533739b893b0 |
source | Publicly Available Content Database |
subjects | Approximation Chemical reactions Darcy number Fractions Heat conductivity heat source/sink Heat transfer hybrid nanofluid Hypergeometric functions Investigations Magnetic fields Magnetohydrodynamics Marangoni convection MHD Mixtures Nanofluids Nanoparticles Newtonian fluids Nonlinear differential equations Partial differential equations Porous materials Porous media Radiation Reynolds number Schmidt number Silicon wafers Silver Thermal radiation Titanium dioxide Transpiration Velocity Viscosity |
title | Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermosolutal%20Marangoni%20Convection%20for%20Hybrid%20Nanofluid%20Models:%20An%20Analytical%20Approach&rft.jtitle=Physics%20(Online)&rft.au=Mahabaleshwar,%20Ulavathi%20Shettar&rft.date=2023-03-01&rft.volume=5&rft.issue=1&rft.spage=24&rft.epage=44&rft.pages=24-44&rft.issn=2624-8174&rft.eissn=2624-8174&rft_id=info:doi/10.3390/physics5010003&rft_dat=%3Cproquest_doaj_%3E2791695671%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791695671&rft_id=info:pmid/&rfr_iscdi=true |