Loading…

Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach

The present study investigates the effect of mass transpiration on heat absorption/generation, thermal radiation and chemical reaction in the magnetohydrodynamics (MHD) Darcy–Forchheimer flow of a Newtonian fluid at the thermosolutal Marangoni boundary over a porous medium. The fluid region consists...

Full description

Saved in:
Bibliographic Details
Published in:Physics (Online) 2023-03, Vol.5 (1), p.24-44
Main Authors: Mahabaleshwar, Ulavathi Shettar, Mahesh, Rudraiah, Sofos, Filippos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503
cites cdi_FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503
container_end_page 44
container_issue 1
container_start_page 24
container_title Physics (Online)
container_volume 5
creator Mahabaleshwar, Ulavathi Shettar
Mahesh, Rudraiah
Sofos, Filippos
description The present study investigates the effect of mass transpiration on heat absorption/generation, thermal radiation and chemical reaction in the magnetohydrodynamics (MHD) Darcy–Forchheimer flow of a Newtonian fluid at the thermosolutal Marangoni boundary over a porous medium. The fluid region consists of H2O as the base fluid and fractions of TiO2–Ag nanoparticles. The mathematical approach given here employs the similarity transformation, in order to transform the leading partial differential equation (PDE) into a set of nonlinear ordinary differential equations (ODEs). The derived equations are solved analytically by using Cardon’s method and the confluent hypergeometric function. The solutions are further graphically analyzed, taking into account parameters such as mass transpiration, chemical reaction coefficient, thermal radiation, Schmidt number, Marangoni number, and inverse Darcy number. According to our findings, adding TiO2–Ag nanoparticles into conventional fluids can greatly enhance heat transfer. In addition, the mixture of TiO2–Ag with H2O gives higher heat energy compared to the mixture of only TiO2 with H2O.
doi_str_mv 10.3390/physics5010003
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b289949cfb1c4df4b643533739b893b0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b289949cfb1c4df4b643533739b893b0</doaj_id><sourcerecordid>2791695671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503</originalsourceid><addsrcrecordid>eNpVUU1Lw0AQXUTBUnv1HPDcup9J1lspagutXqrXZXazaVPSbNxNhPx7t1ZEYWCG4c2b93gI3RI8Y0zi-3Y_hMoEgQnGmF2gEU0pn-Yk45d_5ms0CeEQEVRgIakYofft3vqjC67uO6iTDXhodq6pkoVrPq3pKtckpfPJctC-KpIXaFxZ93HauMLW4SGZN7GgHrrKxPt523oHZn-Drkqog5389DF6e3rcLpbT9evzajFfTw0ntJtSqw0YyAwwARmRRUozC8ZAirkmmEMqokyZFwYKSspM5tzanBujOYPogY3R6sxbODio1ldH8INyUKnvhfM7BT5Kq63SNJeSS1NqYnhRcp1yJhjLmNS5ZPrEdXfmihY-ehs6dXC9j96CopkkqRRpRiJqdkYZ70Lwtvz9SrA6RaH-R8G-AAaafXs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791695671</pqid></control><display><type>article</type><title>Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach</title><source>Publicly Available Content Database</source><creator>Mahabaleshwar, Ulavathi Shettar ; Mahesh, Rudraiah ; Sofos, Filippos</creator><creatorcontrib>Mahabaleshwar, Ulavathi Shettar ; Mahesh, Rudraiah ; Sofos, Filippos</creatorcontrib><description>The present study investigates the effect of mass transpiration on heat absorption/generation, thermal radiation and chemical reaction in the magnetohydrodynamics (MHD) Darcy–Forchheimer flow of a Newtonian fluid at the thermosolutal Marangoni boundary over a porous medium. The fluid region consists of H2O as the base fluid and fractions of TiO2–Ag nanoparticles. The mathematical approach given here employs the similarity transformation, in order to transform the leading partial differential equation (PDE) into a set of nonlinear ordinary differential equations (ODEs). The derived equations are solved analytically by using Cardon’s method and the confluent hypergeometric function. The solutions are further graphically analyzed, taking into account parameters such as mass transpiration, chemical reaction coefficient, thermal radiation, Schmidt number, Marangoni number, and inverse Darcy number. According to our findings, adding TiO2–Ag nanoparticles into conventional fluids can greatly enhance heat transfer. In addition, the mixture of TiO2–Ag with H2O gives higher heat energy compared to the mixture of only TiO2 with H2O.</description><identifier>ISSN: 2624-8174</identifier><identifier>EISSN: 2624-8174</identifier><identifier>DOI: 10.3390/physics5010003</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Chemical reactions ; Darcy number ; Fractions ; Heat conductivity ; heat source/sink ; Heat transfer ; hybrid nanofluid ; Hypergeometric functions ; Investigations ; Magnetic fields ; Magnetohydrodynamics ; Marangoni convection ; MHD ; Mixtures ; Nanofluids ; Nanoparticles ; Newtonian fluids ; Nonlinear differential equations ; Partial differential equations ; Porous materials ; Porous media ; Radiation ; Reynolds number ; Schmidt number ; Silicon wafers ; Silver ; Thermal radiation ; Titanium dioxide ; Transpiration ; Velocity ; Viscosity</subject><ispartof>Physics (Online), 2023-03, Vol.5 (1), p.24-44</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503</citedby><cites>FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503</cites><orcidid>0000-0001-5036-2120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791695671/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791695671?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Mahabaleshwar, Ulavathi Shettar</creatorcontrib><creatorcontrib>Mahesh, Rudraiah</creatorcontrib><creatorcontrib>Sofos, Filippos</creatorcontrib><title>Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach</title><title>Physics (Online)</title><description>The present study investigates the effect of mass transpiration on heat absorption/generation, thermal radiation and chemical reaction in the magnetohydrodynamics (MHD) Darcy–Forchheimer flow of a Newtonian fluid at the thermosolutal Marangoni boundary over a porous medium. The fluid region consists of H2O as the base fluid and fractions of TiO2–Ag nanoparticles. The mathematical approach given here employs the similarity transformation, in order to transform the leading partial differential equation (PDE) into a set of nonlinear ordinary differential equations (ODEs). The derived equations are solved analytically by using Cardon’s method and the confluent hypergeometric function. The solutions are further graphically analyzed, taking into account parameters such as mass transpiration, chemical reaction coefficient, thermal radiation, Schmidt number, Marangoni number, and inverse Darcy number. According to our findings, adding TiO2–Ag nanoparticles into conventional fluids can greatly enhance heat transfer. In addition, the mixture of TiO2–Ag with H2O gives higher heat energy compared to the mixture of only TiO2 with H2O.</description><subject>Approximation</subject><subject>Chemical reactions</subject><subject>Darcy number</subject><subject>Fractions</subject><subject>Heat conductivity</subject><subject>heat source/sink</subject><subject>Heat transfer</subject><subject>hybrid nanofluid</subject><subject>Hypergeometric functions</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Marangoni convection</subject><subject>MHD</subject><subject>Mixtures</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Newtonian fluids</subject><subject>Nonlinear differential equations</subject><subject>Partial differential equations</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Radiation</subject><subject>Reynolds number</subject><subject>Schmidt number</subject><subject>Silicon wafers</subject><subject>Silver</subject><subject>Thermal radiation</subject><subject>Titanium dioxide</subject><subject>Transpiration</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2624-8174</issn><issn>2624-8174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1Lw0AQXUTBUnv1HPDcup9J1lspagutXqrXZXazaVPSbNxNhPx7t1ZEYWCG4c2b93gI3RI8Y0zi-3Y_hMoEgQnGmF2gEU0pn-Yk45d_5ms0CeEQEVRgIakYofft3vqjC67uO6iTDXhodq6pkoVrPq3pKtckpfPJctC-KpIXaFxZ93HauMLW4SGZN7GgHrrKxPt523oHZn-Drkqog5389DF6e3rcLpbT9evzajFfTw0ntJtSqw0YyAwwARmRRUozC8ZAirkmmEMqokyZFwYKSspM5tzanBujOYPogY3R6sxbODio1ldH8INyUKnvhfM7BT5Kq63SNJeSS1NqYnhRcp1yJhjLmNS5ZPrEdXfmihY-ehs6dXC9j96CopkkqRRpRiJqdkYZ70Lwtvz9SrA6RaH-R8G-AAaafXs</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Mahabaleshwar, Ulavathi Shettar</creator><creator>Mahesh, Rudraiah</creator><creator>Sofos, Filippos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5036-2120</orcidid></search><sort><creationdate>20230301</creationdate><title>Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach</title><author>Mahabaleshwar, Ulavathi Shettar ; Mahesh, Rudraiah ; Sofos, Filippos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Chemical reactions</topic><topic>Darcy number</topic><topic>Fractions</topic><topic>Heat conductivity</topic><topic>heat source/sink</topic><topic>Heat transfer</topic><topic>hybrid nanofluid</topic><topic>Hypergeometric functions</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Marangoni convection</topic><topic>MHD</topic><topic>Mixtures</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Newtonian fluids</topic><topic>Nonlinear differential equations</topic><topic>Partial differential equations</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Radiation</topic><topic>Reynolds number</topic><topic>Schmidt number</topic><topic>Silicon wafers</topic><topic>Silver</topic><topic>Thermal radiation</topic><topic>Titanium dioxide</topic><topic>Transpiration</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahabaleshwar, Ulavathi Shettar</creatorcontrib><creatorcontrib>Mahesh, Rudraiah</creatorcontrib><creatorcontrib>Sofos, Filippos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Physics (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahabaleshwar, Ulavathi Shettar</au><au>Mahesh, Rudraiah</au><au>Sofos, Filippos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach</atitle><jtitle>Physics (Online)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>5</volume><issue>1</issue><spage>24</spage><epage>44</epage><pages>24-44</pages><issn>2624-8174</issn><eissn>2624-8174</eissn><abstract>The present study investigates the effect of mass transpiration on heat absorption/generation, thermal radiation and chemical reaction in the magnetohydrodynamics (MHD) Darcy–Forchheimer flow of a Newtonian fluid at the thermosolutal Marangoni boundary over a porous medium. The fluid region consists of H2O as the base fluid and fractions of TiO2–Ag nanoparticles. The mathematical approach given here employs the similarity transformation, in order to transform the leading partial differential equation (PDE) into a set of nonlinear ordinary differential equations (ODEs). The derived equations are solved analytically by using Cardon’s method and the confluent hypergeometric function. The solutions are further graphically analyzed, taking into account parameters such as mass transpiration, chemical reaction coefficient, thermal radiation, Schmidt number, Marangoni number, and inverse Darcy number. According to our findings, adding TiO2–Ag nanoparticles into conventional fluids can greatly enhance heat transfer. In addition, the mixture of TiO2–Ag with H2O gives higher heat energy compared to the mixture of only TiO2 with H2O.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/physics5010003</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5036-2120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2624-8174
ispartof Physics (Online), 2023-03, Vol.5 (1), p.24-44
issn 2624-8174
2624-8174
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b289949cfb1c4df4b643533739b893b0
source Publicly Available Content Database
subjects Approximation
Chemical reactions
Darcy number
Fractions
Heat conductivity
heat source/sink
Heat transfer
hybrid nanofluid
Hypergeometric functions
Investigations
Magnetic fields
Magnetohydrodynamics
Marangoni convection
MHD
Mixtures
Nanofluids
Nanoparticles
Newtonian fluids
Nonlinear differential equations
Partial differential equations
Porous materials
Porous media
Radiation
Reynolds number
Schmidt number
Silicon wafers
Silver
Thermal radiation
Titanium dioxide
Transpiration
Velocity
Viscosity
title Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermosolutal%20Marangoni%20Convection%20for%20Hybrid%20Nanofluid%20Models:%20An%20Analytical%20Approach&rft.jtitle=Physics%20(Online)&rft.au=Mahabaleshwar,%20Ulavathi%20Shettar&rft.date=2023-03-01&rft.volume=5&rft.issue=1&rft.spage=24&rft.epage=44&rft.pages=24-44&rft.issn=2624-8174&rft.eissn=2624-8174&rft_id=info:doi/10.3390/physics5010003&rft_dat=%3Cproquest_doaj_%3E2791695671%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-2ebcaca7ca35a719d627eacca604b104a6559298dcad21f7984ee84ccb43a2503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791695671&rft_id=info:pmid/&rfr_iscdi=true