Loading…
Perovskite neural trees
Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matt...
Saved in:
Published in: | Nature communications 2020-05, Vol.11 (1), p.2245-9, Article 2245 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513 |
---|---|
cites | cdi_FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 2245 |
container_title | Nature communications |
container_volume | 11 |
creator | Zhang, Hai-Tian Park, Tae Joon Zaluzhnyy, Ivan A. Wang, Qi Wadekar, Shakti Nagnath Manna, Sukriti Andrawis, Robert Sprau, Peter O. Sun, Yifei Zhang, Zhen Huang, Chengzi Zhou, Hua Zhang, Zhan Narayanan, Badri Srinivasan, Gopalakrishnan Hua, Nelson Nazaretski, Evgeny Huang, Xiaojing Yan, Hanfei Ge, Mingyuan Chu, Yong S. Cherukara, Mathew J. Holt, Martin V. Krishnamurthy, Muthu Shpyrko, Oleg G. Sankaranarayanan, Subramanian K.R.S. Frano, Alex Roy, Kaushik Ramanathan, Shriram |
description | Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence.
Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. |
doi_str_mv | 10.1038/s41467-020-16105-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b299380324b440b29b94f53de8da2725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b299380324b440b29b94f53de8da2725</doaj_id><sourcerecordid>2399789342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513</originalsourceid><addsrcrecordid>eNp9UU1v1TAQtBCIVqVnJA6ogguXgL3rOPYFCVV8VKoEBzivHGfzmkdeXOyk0vv3uE0pLQd8sdc7O7O7I8QLJd8qifZd1kqbppIgK2WUrKv9I3EIUqtKNYCP770PxHHOW1kOOmW1fioOENCCRHMonn_jFK_yz2Hmk4mX5MeTOTHnZ-JJ78fMx7f3kfjx6eP30y_V-dfPZ6cfzqtgEOeqd7ZxxhuH3NfY975rrWIGRteB6p3y0kMo_dnWtH0DnVdtEzwge-58rfBInK28XfRbukzDzqc9RT_QzUdMG_JpHsLI1IJzaCWCbrWWJWqdLqId285DA3Xher9yXS7tjrvA01zmeUD6MDMNF7SJV9SANLKWheDVShDzPFAOZSnhIsRp4jCTMrXR-lrlza1Kir8WzjPthhx4HP3EcckEWsoandWmQF__A93GJU1lnwToXGMdaigoWFEhxZwT93cdK0nXXtPqNRWv6cZr2peil_dnvSv542wB4ArIJTVtOP3V_g_tb1gcsqE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399789342</pqid></control><display><type>article</type><title>Perovskite neural trees</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhang, Hai-Tian ; Park, Tae Joon ; Zaluzhnyy, Ivan A. ; Wang, Qi ; Wadekar, Shakti Nagnath ; Manna, Sukriti ; Andrawis, Robert ; Sprau, Peter O. ; Sun, Yifei ; Zhang, Zhen ; Huang, Chengzi ; Zhou, Hua ; Zhang, Zhan ; Narayanan, Badri ; Srinivasan, Gopalakrishnan ; Hua, Nelson ; Nazaretski, Evgeny ; Huang, Xiaojing ; Yan, Hanfei ; Ge, Mingyuan ; Chu, Yong S. ; Cherukara, Mathew J. ; Holt, Martin V. ; Krishnamurthy, Muthu ; Shpyrko, Oleg G. ; Sankaranarayanan, Subramanian K.R.S. ; Frano, Alex ; Roy, Kaushik ; Ramanathan, Shriram</creator><creatorcontrib>Zhang, Hai-Tian ; Park, Tae Joon ; Zaluzhnyy, Ivan A. ; Wang, Qi ; Wadekar, Shakti Nagnath ; Manna, Sukriti ; Andrawis, Robert ; Sprau, Peter O. ; Sun, Yifei ; Zhang, Zhen ; Huang, Chengzi ; Zhou, Hua ; Zhang, Zhan ; Narayanan, Badri ; Srinivasan, Gopalakrishnan ; Hua, Nelson ; Nazaretski, Evgeny ; Huang, Xiaojing ; Yan, Hanfei ; Ge, Mingyuan ; Chu, Yong S. ; Cherukara, Mathew J. ; Holt, Martin V. ; Krishnamurthy, Muthu ; Shpyrko, Oleg G. ; Sankaranarayanan, Subramanian K.R.S. ; Frano, Alex ; Roy, Kaushik ; Ramanathan, Shriram ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Energy Frontier Research Centers (EFRC) (United States). Quantum Materials for Energy Efficient Neuromorphic Computing (Q-MEEN-C) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence.
Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-16105-y</identifier><identifier>PMID: 32382036</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/766/1130 ; Artificial intelligence ; Computation ; Conductance ; Electric pulses ; Energy efficiency ; Firing pattern ; High speed ; Humanities and Social Sciences ; Interrogation ; Learning ; MATERIALS SCIENCE ; multidisciplinary ; Neural networks ; Number theory ; Object recognition ; Pattern recognition ; Perovskites ; Potentiation ; Protons ; Resistance ; Room temperature ; Science ; Science (multidisciplinary) ; Spin glasses ; Synapses ; Synaptic depression ; Trees</subject><ispartof>Nature communications, 2020-05, Vol.11 (1), p.2245-9, Article 2245</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513</citedby><cites>FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513</cites><orcidid>0000-0002-8538-0641 ; 0000-0001-9316-129X ; 0000-0003-2640-7100 ; 0000-0001-8965-5684 ; 0000-0002-7618-6134 ; 0000-0002-1475-6998 ; 0000-0003-1207-8174 ; 0000-0001-9642-8674 ; 0000000326407100 ; 000000019316129X ; 0000000285380641 ; 0000000189655684 ; 0000000214756998 ; 0000000312078174 ; 0000000276186134 ; 0000000196428674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2399789342/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2399789342?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32382036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1656445$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hai-Tian</creatorcontrib><creatorcontrib>Park, Tae Joon</creatorcontrib><creatorcontrib>Zaluzhnyy, Ivan A.</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Wadekar, Shakti Nagnath</creatorcontrib><creatorcontrib>Manna, Sukriti</creatorcontrib><creatorcontrib>Andrawis, Robert</creatorcontrib><creatorcontrib>Sprau, Peter O.</creatorcontrib><creatorcontrib>Sun, Yifei</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Huang, Chengzi</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Zhang, Zhan</creatorcontrib><creatorcontrib>Narayanan, Badri</creatorcontrib><creatorcontrib>Srinivasan, Gopalakrishnan</creatorcontrib><creatorcontrib>Hua, Nelson</creatorcontrib><creatorcontrib>Nazaretski, Evgeny</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Ge, Mingyuan</creatorcontrib><creatorcontrib>Chu, Yong S.</creatorcontrib><creatorcontrib>Cherukara, Mathew J.</creatorcontrib><creatorcontrib>Holt, Martin V.</creatorcontrib><creatorcontrib>Krishnamurthy, Muthu</creatorcontrib><creatorcontrib>Shpyrko, Oleg G.</creatorcontrib><creatorcontrib>Sankaranarayanan, Subramanian K.R.S.</creatorcontrib><creatorcontrib>Frano, Alex</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><creatorcontrib>Ramanathan, Shriram</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Quantum Materials for Energy Efficient Neuromorphic Computing (Q-MEEN-C)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Perovskite neural trees</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence.
Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses.</description><subject>639/301/1005</subject><subject>639/766/1130</subject><subject>Artificial intelligence</subject><subject>Computation</subject><subject>Conductance</subject><subject>Electric pulses</subject><subject>Energy efficiency</subject><subject>Firing pattern</subject><subject>High speed</subject><subject>Humanities and Social Sciences</subject><subject>Interrogation</subject><subject>Learning</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Number theory</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Perovskites</subject><subject>Potentiation</subject><subject>Protons</subject><subject>Resistance</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spin glasses</subject><subject>Synapses</subject><subject>Synaptic depression</subject><subject>Trees</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1v1TAQtBCIVqVnJA6ogguXgL3rOPYFCVV8VKoEBzivHGfzmkdeXOyk0vv3uE0pLQd8sdc7O7O7I8QLJd8qifZd1kqbppIgK2WUrKv9I3EIUqtKNYCP770PxHHOW1kOOmW1fioOENCCRHMonn_jFK_yz2Hmk4mX5MeTOTHnZ-JJ78fMx7f3kfjx6eP30y_V-dfPZ6cfzqtgEOeqd7ZxxhuH3NfY975rrWIGRteB6p3y0kMo_dnWtH0DnVdtEzwge-58rfBInK28XfRbukzDzqc9RT_QzUdMG_JpHsLI1IJzaCWCbrWWJWqdLqId285DA3Xher9yXS7tjrvA01zmeUD6MDMNF7SJV9SANLKWheDVShDzPFAOZSnhIsRp4jCTMrXR-lrlza1Kir8WzjPthhx4HP3EcckEWsoandWmQF__A93GJU1lnwToXGMdaigoWFEhxZwT93cdK0nXXtPqNRWv6cZr2peil_dnvSv542wB4ArIJTVtOP3V_g_tb1gcsqE</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Zhang, Hai-Tian</creator><creator>Park, Tae Joon</creator><creator>Zaluzhnyy, Ivan A.</creator><creator>Wang, Qi</creator><creator>Wadekar, Shakti Nagnath</creator><creator>Manna, Sukriti</creator><creator>Andrawis, Robert</creator><creator>Sprau, Peter O.</creator><creator>Sun, Yifei</creator><creator>Zhang, Zhen</creator><creator>Huang, Chengzi</creator><creator>Zhou, Hua</creator><creator>Zhang, Zhan</creator><creator>Narayanan, Badri</creator><creator>Srinivasan, Gopalakrishnan</creator><creator>Hua, Nelson</creator><creator>Nazaretski, Evgeny</creator><creator>Huang, Xiaojing</creator><creator>Yan, Hanfei</creator><creator>Ge, Mingyuan</creator><creator>Chu, Yong S.</creator><creator>Cherukara, Mathew J.</creator><creator>Holt, Martin V.</creator><creator>Krishnamurthy, Muthu</creator><creator>Shpyrko, Oleg G.</creator><creator>Sankaranarayanan, Subramanian K.R.S.</creator><creator>Frano, Alex</creator><creator>Roy, Kaushik</creator><creator>Ramanathan, Shriram</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8538-0641</orcidid><orcidid>https://orcid.org/0000-0001-9316-129X</orcidid><orcidid>https://orcid.org/0000-0003-2640-7100</orcidid><orcidid>https://orcid.org/0000-0001-8965-5684</orcidid><orcidid>https://orcid.org/0000-0002-7618-6134</orcidid><orcidid>https://orcid.org/0000-0002-1475-6998</orcidid><orcidid>https://orcid.org/0000-0003-1207-8174</orcidid><orcidid>https://orcid.org/0000-0001-9642-8674</orcidid><orcidid>https://orcid.org/0000000326407100</orcidid><orcidid>https://orcid.org/000000019316129X</orcidid><orcidid>https://orcid.org/0000000285380641</orcidid><orcidid>https://orcid.org/0000000189655684</orcidid><orcidid>https://orcid.org/0000000214756998</orcidid><orcidid>https://orcid.org/0000000312078174</orcidid><orcidid>https://orcid.org/0000000276186134</orcidid><orcidid>https://orcid.org/0000000196428674</orcidid></search><sort><creationdate>20200507</creationdate><title>Perovskite neural trees</title><author>Zhang, Hai-Tian ; Park, Tae Joon ; Zaluzhnyy, Ivan A. ; Wang, Qi ; Wadekar, Shakti Nagnath ; Manna, Sukriti ; Andrawis, Robert ; Sprau, Peter O. ; Sun, Yifei ; Zhang, Zhen ; Huang, Chengzi ; Zhou, Hua ; Zhang, Zhan ; Narayanan, Badri ; Srinivasan, Gopalakrishnan ; Hua, Nelson ; Nazaretski, Evgeny ; Huang, Xiaojing ; Yan, Hanfei ; Ge, Mingyuan ; Chu, Yong S. ; Cherukara, Mathew J. ; Holt, Martin V. ; Krishnamurthy, Muthu ; Shpyrko, Oleg G. ; Sankaranarayanan, Subramanian K.R.S. ; Frano, Alex ; Roy, Kaushik ; Ramanathan, Shriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1005</topic><topic>639/766/1130</topic><topic>Artificial intelligence</topic><topic>Computation</topic><topic>Conductance</topic><topic>Electric pulses</topic><topic>Energy efficiency</topic><topic>Firing pattern</topic><topic>High speed</topic><topic>Humanities and Social Sciences</topic><topic>Interrogation</topic><topic>Learning</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Number theory</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Perovskites</topic><topic>Potentiation</topic><topic>Protons</topic><topic>Resistance</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spin glasses</topic><topic>Synapses</topic><topic>Synaptic depression</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hai-Tian</creatorcontrib><creatorcontrib>Park, Tae Joon</creatorcontrib><creatorcontrib>Zaluzhnyy, Ivan A.</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Wadekar, Shakti Nagnath</creatorcontrib><creatorcontrib>Manna, Sukriti</creatorcontrib><creatorcontrib>Andrawis, Robert</creatorcontrib><creatorcontrib>Sprau, Peter O.</creatorcontrib><creatorcontrib>Sun, Yifei</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Huang, Chengzi</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Zhang, Zhan</creatorcontrib><creatorcontrib>Narayanan, Badri</creatorcontrib><creatorcontrib>Srinivasan, Gopalakrishnan</creatorcontrib><creatorcontrib>Hua, Nelson</creatorcontrib><creatorcontrib>Nazaretski, Evgeny</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Ge, Mingyuan</creatorcontrib><creatorcontrib>Chu, Yong S.</creatorcontrib><creatorcontrib>Cherukara, Mathew J.</creatorcontrib><creatorcontrib>Holt, Martin V.</creatorcontrib><creatorcontrib>Krishnamurthy, Muthu</creatorcontrib><creatorcontrib>Shpyrko, Oleg G.</creatorcontrib><creatorcontrib>Sankaranarayanan, Subramanian K.R.S.</creatorcontrib><creatorcontrib>Frano, Alex</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><creatorcontrib>Ramanathan, Shriram</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Quantum Materials for Energy Efficient Neuromorphic Computing (Q-MEEN-C)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hai-Tian</au><au>Park, Tae Joon</au><au>Zaluzhnyy, Ivan A.</au><au>Wang, Qi</au><au>Wadekar, Shakti Nagnath</au><au>Manna, Sukriti</au><au>Andrawis, Robert</au><au>Sprau, Peter O.</au><au>Sun, Yifei</au><au>Zhang, Zhen</au><au>Huang, Chengzi</au><au>Zhou, Hua</au><au>Zhang, Zhan</au><au>Narayanan, Badri</au><au>Srinivasan, Gopalakrishnan</au><au>Hua, Nelson</au><au>Nazaretski, Evgeny</au><au>Huang, Xiaojing</au><au>Yan, Hanfei</au><au>Ge, Mingyuan</au><au>Chu, Yong S.</au><au>Cherukara, Mathew J.</au><au>Holt, Martin V.</au><au>Krishnamurthy, Muthu</au><au>Shpyrko, Oleg G.</au><au>Sankaranarayanan, Subramanian K.R.S.</au><au>Frano, Alex</au><au>Roy, Kaushik</au><au>Ramanathan, Shriram</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Quantum Materials for Energy Efficient Neuromorphic Computing (Q-MEEN-C)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perovskite neural trees</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-05-07</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>2245</spage><epage>9</epage><pages>2245-9</pages><artnum>2245</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence.
Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32382036</pmid><doi>10.1038/s41467-020-16105-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8538-0641</orcidid><orcidid>https://orcid.org/0000-0001-9316-129X</orcidid><orcidid>https://orcid.org/0000-0003-2640-7100</orcidid><orcidid>https://orcid.org/0000-0001-8965-5684</orcidid><orcidid>https://orcid.org/0000-0002-7618-6134</orcidid><orcidid>https://orcid.org/0000-0002-1475-6998</orcidid><orcidid>https://orcid.org/0000-0003-1207-8174</orcidid><orcidid>https://orcid.org/0000-0001-9642-8674</orcidid><orcidid>https://orcid.org/0000000326407100</orcidid><orcidid>https://orcid.org/000000019316129X</orcidid><orcidid>https://orcid.org/0000000285380641</orcidid><orcidid>https://orcid.org/0000000189655684</orcidid><orcidid>https://orcid.org/0000000214756998</orcidid><orcidid>https://orcid.org/0000000312078174</orcidid><orcidid>https://orcid.org/0000000276186134</orcidid><orcidid>https://orcid.org/0000000196428674</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-05, Vol.11 (1), p.2245-9, Article 2245 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b299380324b440b29b94f53de8da2725 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/1005 639/766/1130 Artificial intelligence Computation Conductance Electric pulses Energy efficiency Firing pattern High speed Humanities and Social Sciences Interrogation Learning MATERIALS SCIENCE multidisciplinary Neural networks Number theory Object recognition Pattern recognition Perovskites Potentiation Protons Resistance Room temperature Science Science (multidisciplinary) Spin glasses Synapses Synaptic depression Trees |
title | Perovskite neural trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perovskite%20neural%20trees&rft.jtitle=Nature%20communications&rft.au=Zhang,%20Hai-Tian&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2020-05-07&rft.volume=11&rft.issue=1&rft.spage=2245&rft.epage=9&rft.pages=2245-9&rft.artnum=2245&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-16105-y&rft_dat=%3Cproquest_doaj_%3E2399789342%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2399789342&rft_id=info:pmid/32382036&rfr_iscdi=true |