Loading…

Perovskite neural trees

Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matt...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-05, Vol.11 (1), p.2245-9, Article 2245
Main Authors: Zhang, Hai-Tian, Park, Tae Joon, Zaluzhnyy, Ivan A., Wang, Qi, Wadekar, Shakti Nagnath, Manna, Sukriti, Andrawis, Robert, Sprau, Peter O., Sun, Yifei, Zhang, Zhen, Huang, Chengzi, Zhou, Hua, Zhang, Zhan, Narayanan, Badri, Srinivasan, Gopalakrishnan, Hua, Nelson, Nazaretski, Evgeny, Huang, Xiaojing, Yan, Hanfei, Ge, Mingyuan, Chu, Yong S., Cherukara, Mathew J., Holt, Martin V., Krishnamurthy, Muthu, Shpyrko, Oleg G., Sankaranarayanan, Subramanian K.R.S., Frano, Alex, Roy, Kaushik, Ramanathan, Shriram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513
cites cdi_FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513
container_end_page 9
container_issue 1
container_start_page 2245
container_title Nature communications
container_volume 11
creator Zhang, Hai-Tian
Park, Tae Joon
Zaluzhnyy, Ivan A.
Wang, Qi
Wadekar, Shakti Nagnath
Manna, Sukriti
Andrawis, Robert
Sprau, Peter O.
Sun, Yifei
Zhang, Zhen
Huang, Chengzi
Zhou, Hua
Zhang, Zhan
Narayanan, Badri
Srinivasan, Gopalakrishnan
Hua, Nelson
Nazaretski, Evgeny
Huang, Xiaojing
Yan, Hanfei
Ge, Mingyuan
Chu, Yong S.
Cherukara, Mathew J.
Holt, Martin V.
Krishnamurthy, Muthu
Shpyrko, Oleg G.
Sankaranarayanan, Subramanian K.R.S.
Frano, Alex
Roy, Kaushik
Ramanathan, Shriram
description Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence. Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses.
doi_str_mv 10.1038/s41467-020-16105-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b299380324b440b29b94f53de8da2725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b299380324b440b29b94f53de8da2725</doaj_id><sourcerecordid>2399789342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513</originalsourceid><addsrcrecordid>eNp9UU1v1TAQtBCIVqVnJA6ogguXgL3rOPYFCVV8VKoEBzivHGfzmkdeXOyk0vv3uE0pLQd8sdc7O7O7I8QLJd8qifZd1kqbppIgK2WUrKv9I3EIUqtKNYCP770PxHHOW1kOOmW1fioOENCCRHMonn_jFK_yz2Hmk4mX5MeTOTHnZ-JJ78fMx7f3kfjx6eP30y_V-dfPZ6cfzqtgEOeqd7ZxxhuH3NfY975rrWIGRteB6p3y0kMo_dnWtH0DnVdtEzwge-58rfBInK28XfRbukzDzqc9RT_QzUdMG_JpHsLI1IJzaCWCbrWWJWqdLqId285DA3Xher9yXS7tjrvA01zmeUD6MDMNF7SJV9SANLKWheDVShDzPFAOZSnhIsRp4jCTMrXR-lrlza1Kir8WzjPthhx4HP3EcckEWsoandWmQF__A93GJU1lnwToXGMdaigoWFEhxZwT93cdK0nXXtPqNRWv6cZr2peil_dnvSv542wB4ArIJTVtOP3V_g_tb1gcsqE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399789342</pqid></control><display><type>article</type><title>Perovskite neural trees</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhang, Hai-Tian ; Park, Tae Joon ; Zaluzhnyy, Ivan A. ; Wang, Qi ; Wadekar, Shakti Nagnath ; Manna, Sukriti ; Andrawis, Robert ; Sprau, Peter O. ; Sun, Yifei ; Zhang, Zhen ; Huang, Chengzi ; Zhou, Hua ; Zhang, Zhan ; Narayanan, Badri ; Srinivasan, Gopalakrishnan ; Hua, Nelson ; Nazaretski, Evgeny ; Huang, Xiaojing ; Yan, Hanfei ; Ge, Mingyuan ; Chu, Yong S. ; Cherukara, Mathew J. ; Holt, Martin V. ; Krishnamurthy, Muthu ; Shpyrko, Oleg G. ; Sankaranarayanan, Subramanian K.R.S. ; Frano, Alex ; Roy, Kaushik ; Ramanathan, Shriram</creator><creatorcontrib>Zhang, Hai-Tian ; Park, Tae Joon ; Zaluzhnyy, Ivan A. ; Wang, Qi ; Wadekar, Shakti Nagnath ; Manna, Sukriti ; Andrawis, Robert ; Sprau, Peter O. ; Sun, Yifei ; Zhang, Zhen ; Huang, Chengzi ; Zhou, Hua ; Zhang, Zhan ; Narayanan, Badri ; Srinivasan, Gopalakrishnan ; Hua, Nelson ; Nazaretski, Evgeny ; Huang, Xiaojing ; Yan, Hanfei ; Ge, Mingyuan ; Chu, Yong S. ; Cherukara, Mathew J. ; Holt, Martin V. ; Krishnamurthy, Muthu ; Shpyrko, Oleg G. ; Sankaranarayanan, Subramanian K.R.S. ; Frano, Alex ; Roy, Kaushik ; Ramanathan, Shriram ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Energy Frontier Research Centers (EFRC) (United States). Quantum Materials for Energy Efficient Neuromorphic Computing (Q-MEEN-C) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence. Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-16105-y</identifier><identifier>PMID: 32382036</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/766/1130 ; Artificial intelligence ; Computation ; Conductance ; Electric pulses ; Energy efficiency ; Firing pattern ; High speed ; Humanities and Social Sciences ; Interrogation ; Learning ; MATERIALS SCIENCE ; multidisciplinary ; Neural networks ; Number theory ; Object recognition ; Pattern recognition ; Perovskites ; Potentiation ; Protons ; Resistance ; Room temperature ; Science ; Science (multidisciplinary) ; Spin glasses ; Synapses ; Synaptic depression ; Trees</subject><ispartof>Nature communications, 2020-05, Vol.11 (1), p.2245-9, Article 2245</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513</citedby><cites>FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513</cites><orcidid>0000-0002-8538-0641 ; 0000-0001-9316-129X ; 0000-0003-2640-7100 ; 0000-0001-8965-5684 ; 0000-0002-7618-6134 ; 0000-0002-1475-6998 ; 0000-0003-1207-8174 ; 0000-0001-9642-8674 ; 0000000326407100 ; 000000019316129X ; 0000000285380641 ; 0000000189655684 ; 0000000214756998 ; 0000000312078174 ; 0000000276186134 ; 0000000196428674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2399789342/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2399789342?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32382036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1656445$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hai-Tian</creatorcontrib><creatorcontrib>Park, Tae Joon</creatorcontrib><creatorcontrib>Zaluzhnyy, Ivan A.</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Wadekar, Shakti Nagnath</creatorcontrib><creatorcontrib>Manna, Sukriti</creatorcontrib><creatorcontrib>Andrawis, Robert</creatorcontrib><creatorcontrib>Sprau, Peter O.</creatorcontrib><creatorcontrib>Sun, Yifei</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Huang, Chengzi</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Zhang, Zhan</creatorcontrib><creatorcontrib>Narayanan, Badri</creatorcontrib><creatorcontrib>Srinivasan, Gopalakrishnan</creatorcontrib><creatorcontrib>Hua, Nelson</creatorcontrib><creatorcontrib>Nazaretski, Evgeny</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Ge, Mingyuan</creatorcontrib><creatorcontrib>Chu, Yong S.</creatorcontrib><creatorcontrib>Cherukara, Mathew J.</creatorcontrib><creatorcontrib>Holt, Martin V.</creatorcontrib><creatorcontrib>Krishnamurthy, Muthu</creatorcontrib><creatorcontrib>Shpyrko, Oleg G.</creatorcontrib><creatorcontrib>Sankaranarayanan, Subramanian K.R.S.</creatorcontrib><creatorcontrib>Frano, Alex</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><creatorcontrib>Ramanathan, Shriram</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Quantum Materials for Energy Efficient Neuromorphic Computing (Q-MEEN-C)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Perovskite neural trees</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence. Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses.</description><subject>639/301/1005</subject><subject>639/766/1130</subject><subject>Artificial intelligence</subject><subject>Computation</subject><subject>Conductance</subject><subject>Electric pulses</subject><subject>Energy efficiency</subject><subject>Firing pattern</subject><subject>High speed</subject><subject>Humanities and Social Sciences</subject><subject>Interrogation</subject><subject>Learning</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Number theory</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Perovskites</subject><subject>Potentiation</subject><subject>Protons</subject><subject>Resistance</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spin glasses</subject><subject>Synapses</subject><subject>Synaptic depression</subject><subject>Trees</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1v1TAQtBCIVqVnJA6ogguXgL3rOPYFCVV8VKoEBzivHGfzmkdeXOyk0vv3uE0pLQd8sdc7O7O7I8QLJd8qifZd1kqbppIgK2WUrKv9I3EIUqtKNYCP770PxHHOW1kOOmW1fioOENCCRHMonn_jFK_yz2Hmk4mX5MeTOTHnZ-JJ78fMx7f3kfjx6eP30y_V-dfPZ6cfzqtgEOeqd7ZxxhuH3NfY975rrWIGRteB6p3y0kMo_dnWtH0DnVdtEzwge-58rfBInK28XfRbukzDzqc9RT_QzUdMG_JpHsLI1IJzaCWCbrWWJWqdLqId285DA3Xher9yXS7tjrvA01zmeUD6MDMNF7SJV9SANLKWheDVShDzPFAOZSnhIsRp4jCTMrXR-lrlza1Kir8WzjPthhx4HP3EcckEWsoandWmQF__A93GJU1lnwToXGMdaigoWFEhxZwT93cdK0nXXtPqNRWv6cZr2peil_dnvSv542wB4ArIJTVtOP3V_g_tb1gcsqE</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Zhang, Hai-Tian</creator><creator>Park, Tae Joon</creator><creator>Zaluzhnyy, Ivan A.</creator><creator>Wang, Qi</creator><creator>Wadekar, Shakti Nagnath</creator><creator>Manna, Sukriti</creator><creator>Andrawis, Robert</creator><creator>Sprau, Peter O.</creator><creator>Sun, Yifei</creator><creator>Zhang, Zhen</creator><creator>Huang, Chengzi</creator><creator>Zhou, Hua</creator><creator>Zhang, Zhan</creator><creator>Narayanan, Badri</creator><creator>Srinivasan, Gopalakrishnan</creator><creator>Hua, Nelson</creator><creator>Nazaretski, Evgeny</creator><creator>Huang, Xiaojing</creator><creator>Yan, Hanfei</creator><creator>Ge, Mingyuan</creator><creator>Chu, Yong S.</creator><creator>Cherukara, Mathew J.</creator><creator>Holt, Martin V.</creator><creator>Krishnamurthy, Muthu</creator><creator>Shpyrko, Oleg G.</creator><creator>Sankaranarayanan, Subramanian K.R.S.</creator><creator>Frano, Alex</creator><creator>Roy, Kaushik</creator><creator>Ramanathan, Shriram</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8538-0641</orcidid><orcidid>https://orcid.org/0000-0001-9316-129X</orcidid><orcidid>https://orcid.org/0000-0003-2640-7100</orcidid><orcidid>https://orcid.org/0000-0001-8965-5684</orcidid><orcidid>https://orcid.org/0000-0002-7618-6134</orcidid><orcidid>https://orcid.org/0000-0002-1475-6998</orcidid><orcidid>https://orcid.org/0000-0003-1207-8174</orcidid><orcidid>https://orcid.org/0000-0001-9642-8674</orcidid><orcidid>https://orcid.org/0000000326407100</orcidid><orcidid>https://orcid.org/000000019316129X</orcidid><orcidid>https://orcid.org/0000000285380641</orcidid><orcidid>https://orcid.org/0000000189655684</orcidid><orcidid>https://orcid.org/0000000214756998</orcidid><orcidid>https://orcid.org/0000000312078174</orcidid><orcidid>https://orcid.org/0000000276186134</orcidid><orcidid>https://orcid.org/0000000196428674</orcidid></search><sort><creationdate>20200507</creationdate><title>Perovskite neural trees</title><author>Zhang, Hai-Tian ; Park, Tae Joon ; Zaluzhnyy, Ivan A. ; Wang, Qi ; Wadekar, Shakti Nagnath ; Manna, Sukriti ; Andrawis, Robert ; Sprau, Peter O. ; Sun, Yifei ; Zhang, Zhen ; Huang, Chengzi ; Zhou, Hua ; Zhang, Zhan ; Narayanan, Badri ; Srinivasan, Gopalakrishnan ; Hua, Nelson ; Nazaretski, Evgeny ; Huang, Xiaojing ; Yan, Hanfei ; Ge, Mingyuan ; Chu, Yong S. ; Cherukara, Mathew J. ; Holt, Martin V. ; Krishnamurthy, Muthu ; Shpyrko, Oleg G. ; Sankaranarayanan, Subramanian K.R.S. ; Frano, Alex ; Roy, Kaushik ; Ramanathan, Shriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1005</topic><topic>639/766/1130</topic><topic>Artificial intelligence</topic><topic>Computation</topic><topic>Conductance</topic><topic>Electric pulses</topic><topic>Energy efficiency</topic><topic>Firing pattern</topic><topic>High speed</topic><topic>Humanities and Social Sciences</topic><topic>Interrogation</topic><topic>Learning</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Number theory</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Perovskites</topic><topic>Potentiation</topic><topic>Protons</topic><topic>Resistance</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spin glasses</topic><topic>Synapses</topic><topic>Synaptic depression</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hai-Tian</creatorcontrib><creatorcontrib>Park, Tae Joon</creatorcontrib><creatorcontrib>Zaluzhnyy, Ivan A.</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Wadekar, Shakti Nagnath</creatorcontrib><creatorcontrib>Manna, Sukriti</creatorcontrib><creatorcontrib>Andrawis, Robert</creatorcontrib><creatorcontrib>Sprau, Peter O.</creatorcontrib><creatorcontrib>Sun, Yifei</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Huang, Chengzi</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Zhang, Zhan</creatorcontrib><creatorcontrib>Narayanan, Badri</creatorcontrib><creatorcontrib>Srinivasan, Gopalakrishnan</creatorcontrib><creatorcontrib>Hua, Nelson</creatorcontrib><creatorcontrib>Nazaretski, Evgeny</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Ge, Mingyuan</creatorcontrib><creatorcontrib>Chu, Yong S.</creatorcontrib><creatorcontrib>Cherukara, Mathew J.</creatorcontrib><creatorcontrib>Holt, Martin V.</creatorcontrib><creatorcontrib>Krishnamurthy, Muthu</creatorcontrib><creatorcontrib>Shpyrko, Oleg G.</creatorcontrib><creatorcontrib>Sankaranarayanan, Subramanian K.R.S.</creatorcontrib><creatorcontrib>Frano, Alex</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><creatorcontrib>Ramanathan, Shriram</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Quantum Materials for Energy Efficient Neuromorphic Computing (Q-MEEN-C)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hai-Tian</au><au>Park, Tae Joon</au><au>Zaluzhnyy, Ivan A.</au><au>Wang, Qi</au><au>Wadekar, Shakti Nagnath</au><au>Manna, Sukriti</au><au>Andrawis, Robert</au><au>Sprau, Peter O.</au><au>Sun, Yifei</au><au>Zhang, Zhen</au><au>Huang, Chengzi</au><au>Zhou, Hua</au><au>Zhang, Zhan</au><au>Narayanan, Badri</au><au>Srinivasan, Gopalakrishnan</au><au>Hua, Nelson</au><au>Nazaretski, Evgeny</au><au>Huang, Xiaojing</au><au>Yan, Hanfei</au><au>Ge, Mingyuan</au><au>Chu, Yong S.</au><au>Cherukara, Mathew J.</au><au>Holt, Martin V.</au><au>Krishnamurthy, Muthu</au><au>Shpyrko, Oleg G.</au><au>Sankaranarayanan, Subramanian K.R.S.</au><au>Frano, Alex</au><au>Roy, Kaushik</au><au>Ramanathan, Shriram</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Quantum Materials for Energy Efficient Neuromorphic Computing (Q-MEEN-C)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perovskite neural trees</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-05-07</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>2245</spage><epage>9</epage><pages>2245-9</pages><artnum>2245</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence. Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32382036</pmid><doi>10.1038/s41467-020-16105-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8538-0641</orcidid><orcidid>https://orcid.org/0000-0001-9316-129X</orcidid><orcidid>https://orcid.org/0000-0003-2640-7100</orcidid><orcidid>https://orcid.org/0000-0001-8965-5684</orcidid><orcidid>https://orcid.org/0000-0002-7618-6134</orcidid><orcidid>https://orcid.org/0000-0002-1475-6998</orcidid><orcidid>https://orcid.org/0000-0003-1207-8174</orcidid><orcidid>https://orcid.org/0000-0001-9642-8674</orcidid><orcidid>https://orcid.org/0000000326407100</orcidid><orcidid>https://orcid.org/000000019316129X</orcidid><orcidid>https://orcid.org/0000000285380641</orcidid><orcidid>https://orcid.org/0000000189655684</orcidid><orcidid>https://orcid.org/0000000214756998</orcidid><orcidid>https://orcid.org/0000000312078174</orcidid><orcidid>https://orcid.org/0000000276186134</orcidid><orcidid>https://orcid.org/0000000196428674</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-05, Vol.11 (1), p.2245-9, Article 2245
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b299380324b440b29b94f53de8da2725
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1005
639/766/1130
Artificial intelligence
Computation
Conductance
Electric pulses
Energy efficiency
Firing pattern
High speed
Humanities and Social Sciences
Interrogation
Learning
MATERIALS SCIENCE
multidisciplinary
Neural networks
Number theory
Object recognition
Pattern recognition
Perovskites
Potentiation
Protons
Resistance
Room temperature
Science
Science (multidisciplinary)
Spin glasses
Synapses
Synaptic depression
Trees
title Perovskite neural trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perovskite%20neural%20trees&rft.jtitle=Nature%20communications&rft.au=Zhang,%20Hai-Tian&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2020-05-07&rft.volume=11&rft.issue=1&rft.spage=2245&rft.epage=9&rft.pages=2245-9&rft.artnum=2245&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-16105-y&rft_dat=%3Cproquest_doaj_%3E2399789342%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-f98796a693ef53ffadb81ee2e39d21f91a0a2c6108b6bf72da1b7ca23eaeda513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2399789342&rft_id=info:pmid/32382036&rfr_iscdi=true