Loading…

Evaluation of Genomic Prediction Methods for Fusarium Head Blight Resistance in Wheat

Fusarium head blight (FHB) resistance is quantitative and difficult to evaluate. Genomic selection (GS) could accelerate FHB resistance breeding. We used U.S. cooperative FHB wheat nursery data to evaluate GS models for several FHB resistance traits including deoxynivalenol (DON) levels. For all tra...

Full description

Saved in:
Bibliographic Details
Published in:The plant genome 2012-07, Vol.5 (2), p.51-61
Main Authors: Rutkoski, Jessica, Benson, Jared, Jia, Yi, Brown‐Guedira, Gina, Jannink, Jean‐Luc, Sorrells, Mark
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fusarium head blight (FHB) resistance is quantitative and difficult to evaluate. Genomic selection (GS) could accelerate FHB resistance breeding. We used U.S. cooperative FHB wheat nursery data to evaluate GS models for several FHB resistance traits including deoxynivalenol (DON) levels. For all traits we compared the models: ridge regression (RR), Bayesian LASSO (BL), reproducing kernel Hilbert spaces (RKHS) regression, random forest (RF) regression, and multiple linear regression (MLR) (fixed effects). For DON, we evaluated additional prediction methods including bivariate RR models, phenotypes for correlated traits, and RF regression models combining markers and correlated phenotypes as predictors. Additionally, for all traits, we compared different marker sets including genomewide markers, FHB quantitative trait loci (QTL) targeted markers, and both sets combined. Genomic selection accuracies were always higher than MLR accuracies, RF and RKHS regression were often the most accurate methods, and for DON, marker plus trait RF regression was more accurate than all other methods. For all traits except DON, using QTL targeted markers alone led to lower accuracies than using genomewide markers. This study indicates that cooperative FHB nursery data can be useful for GS, and prior information about correlated traits and QTL could be used to improve accuracies in some cases.
ISSN:1940-3372
1940-3372
DOI:10.3835/plantgenome2012.02.0001