Loading…
Identification of NAD-RNA species and ADPR-RNA decapping in Archaea
NAD is a coenzyme central to metabolism that also serves as a 5′-terminal cap for bacterial and eukaryotic transcripts. Thermal degradation of NAD can generate nicotinamide and ADP-ribose (ADPR). Here, we use LC-MS/MS and NAD captureSeq to detect and identify NAD-RNAs in the thermophilic model archa...
Saved in:
Published in: | Nature communications 2023-11, Vol.14 (1), p.7597-7597, Article 7597 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | NAD is a coenzyme central to metabolism that also serves as a 5′-terminal cap for bacterial and eukaryotic transcripts. Thermal degradation of NAD can generate nicotinamide and ADP-ribose (ADPR). Here, we use LC-MS/MS and NAD captureSeq to detect and identify NAD-RNAs in the thermophilic model archaeon
Sulfolobus acidocaldarius
and in the halophilic mesophile
Haloferax volcanii
. None of the four Nudix proteins of
S. acidocaldarius
catalyze NAD-RNA decapping in vitro, but one of the proteins (Saci_NudT5) promotes ADPR-RNA decapping. NAD-RNAs are converted into ADPR-RNAs, which we detect in
S. acidocaldarius
total RNA. Deletion of the gene encoding the 5′−3′ exonuclease Saci-aCPSF2 leads to a 4.5-fold increase in NAD-RNA levels. We propose that the incorporation of NAD into RNA acts as a degradation marker for Saci-aCPSF2. In contrast, ADPR-RNA is processed by Saci_NudT5 into 5′-p-RNAs, providing another layer of regulation for RNA turnover in archaeal cells.
NAD serves as a 5′-terminal cap for bacterial and eukaryotic transcripts, and can be degraded at high temperatures to generate ADP-ribose (ADPR). Here, Gomes-Filho et al. identify NAD-RNAs in thermophilic and mesophilic archaea and provide insights into NAD- and ADPR-mediated turnover of RNAs in these organisms. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-43377-x |