Loading…

Morphology- and ion size-induced actuation of carbon nanotube architectures

Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of smart and nano materials 2018-04, Vol.9 (2), p.111-134
Main Authors: Geier, Sebastian M., Mahrholz, Thorsten, Wierach, Peter, Sinapius, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573
cites cdi_FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573
container_end_page 134
container_issue 2
container_start_page 111
container_title International journal of smart and nano materials
container_volume 9
creator Geier, Sebastian M.
Mahrholz, Thorsten
Wierach, Peter
Sinapius, Michael
description Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.Abbreviations: CNT: carbon nanotubes; CV: cyclic voltammetry; CVD: chemical vapor deposition; HiPCO: high pressure carbon monoxide; IL: ionic liquid; MWCNT: multi-walled carbon nanotube; MW: multi-walled; NHE: normal hydrogen electrode; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate; PPy: polypyrrole; PVDF: polyvinylidenefluoride; SCE: saturated calomel electrode; SWCNT: single-walled carbon nanotube; SW: single-walled; 1M: one molar concentration
doi_str_mv 10.1080/19475411.2018.1457573
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b2d0f022436f4f5f9f7a4da3d1811c20</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b2d0f022436f4f5f9f7a4da3d1811c20</doaj_id><sourcerecordid>2032720209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573</originalsourceid><addsrcrecordid>eNo9UctKA0EQHETBEPMJwoLnjT2v7M5Rgo-g4kXB29A7j2RD3Ikzu4f49U5MTF-6qS6qqylCrilMKdRwS5WopKB0yoDWUypkJSt-RkZ7vJSCfZ6fZkovySSlNeTiTIGcjcjza4jbVdiE5a4ssLNFG7oitT-ubDs7GGcLNP2A_R4OvjAYmzx12IV-aFyB0aza3mVKdOmKXHjcJDc59jH5eLh_nz-VL2-Pi_ndS2m4En2pGBpuuJ_57KhqGqFqoFwg-Jm0aBshpRd5WXvBGVeWOd_wWlEEMLXN343J4qBrA671NrZfGHc6YKv_gBCXGmPfmo3TDbPggTHBs6CXXvkKhUVuaU2pYZC1bg5a2xi-B5d6vQ5D7LJ9nbesYsBAZZY8sEwMKUXnT1cp6H0M-j8GvY9BH2Pgv_kheW0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032720209</pqid></control><display><type>article</type><title>Morphology- and ion size-induced actuation of carbon nanotube architectures</title><source>Taylor &amp; Francis Open Access</source><source>IngentaConnect Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Geier, Sebastian M. ; Mahrholz, Thorsten ; Wierach, Peter ; Sinapius, Michael</creator><creatorcontrib>Geier, Sebastian M. ; Mahrholz, Thorsten ; Wierach, Peter ; Sinapius, Michael</creatorcontrib><description>Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.Abbreviations: CNT: carbon nanotubes; CV: cyclic voltammetry; CVD: chemical vapor deposition; HiPCO: high pressure carbon monoxide; IL: ionic liquid; MWCNT: multi-walled carbon nanotube; MW: multi-walled; NHE: normal hydrogen electrode; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate; PPy: polypyrrole; PVDF: polyvinylidenefluoride; SCE: saturated calomel electrode; SWCNT: single-walled carbon nanotube; SW: single-walled; 1M: one molar concentration</description><identifier>ISSN: 1947-5411</identifier><identifier>EISSN: 1947-542X</identifier><identifier>DOI: 10.1080/19475411.2018.1457573</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Ltd</publisher><subject>Abbreviations ; Actuation ; actuation mechanism ; actuators ; Calomel electrode ; Carbon ; Carbon monoxide ; carbon nanotube papers ; Carbon nanotubes ; Charging ; Chemical vapor deposition ; Electrical charging ; Electrodes ; Energy consumption ; ion size ; Ionic liquids ; Mechanical properties ; Modulus of elasticity ; Multi wall carbon nanotubes ; Nanotubes ; Polydimethylsiloxane ; Polymethyl methacrylate ; Polypyrroles ; Silicone resins ; Single wall carbon nanotubes ; Strain</subject><ispartof>International journal of smart and nano materials, 2018-04, Vol.9 (2), p.111-134</ispartof><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573</citedby><cites>FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573</cites><orcidid>0000-0003-1488-0910 ; 0000-0001-7941-3630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Geier, Sebastian M.</creatorcontrib><creatorcontrib>Mahrholz, Thorsten</creatorcontrib><creatorcontrib>Wierach, Peter</creatorcontrib><creatorcontrib>Sinapius, Michael</creatorcontrib><title>Morphology- and ion size-induced actuation of carbon nanotube architectures</title><title>International journal of smart and nano materials</title><description>Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.Abbreviations: CNT: carbon nanotubes; CV: cyclic voltammetry; CVD: chemical vapor deposition; HiPCO: high pressure carbon monoxide; IL: ionic liquid; MWCNT: multi-walled carbon nanotube; MW: multi-walled; NHE: normal hydrogen electrode; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate; PPy: polypyrrole; PVDF: polyvinylidenefluoride; SCE: saturated calomel electrode; SWCNT: single-walled carbon nanotube; SW: single-walled; 1M: one molar concentration</description><subject>Abbreviations</subject><subject>Actuation</subject><subject>actuation mechanism</subject><subject>actuators</subject><subject>Calomel electrode</subject><subject>Carbon</subject><subject>Carbon monoxide</subject><subject>carbon nanotube papers</subject><subject>Carbon nanotubes</subject><subject>Charging</subject><subject>Chemical vapor deposition</subject><subject>Electrical charging</subject><subject>Electrodes</subject><subject>Energy consumption</subject><subject>ion size</subject><subject>Ionic liquids</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotubes</subject><subject>Polydimethylsiloxane</subject><subject>Polymethyl methacrylate</subject><subject>Polypyrroles</subject><subject>Silicone resins</subject><subject>Single wall carbon nanotubes</subject><subject>Strain</subject><issn>1947-5411</issn><issn>1947-542X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9UctKA0EQHETBEPMJwoLnjT2v7M5Rgo-g4kXB29A7j2RD3Ikzu4f49U5MTF-6qS6qqylCrilMKdRwS5WopKB0yoDWUypkJSt-RkZ7vJSCfZ6fZkovySSlNeTiTIGcjcjza4jbVdiE5a4ssLNFG7oitT-ubDs7GGcLNP2A_R4OvjAYmzx12IV-aFyB0aza3mVKdOmKXHjcJDc59jH5eLh_nz-VL2-Pi_ndS2m4En2pGBpuuJ_57KhqGqFqoFwg-Jm0aBshpRd5WXvBGVeWOd_wWlEEMLXN343J4qBrA671NrZfGHc6YKv_gBCXGmPfmo3TDbPggTHBs6CXXvkKhUVuaU2pYZC1bg5a2xi-B5d6vQ5D7LJ9nbesYsBAZZY8sEwMKUXnT1cp6H0M-j8GvY9BH2Pgv_kheW0</recordid><startdate>20180403</startdate><enddate>20180403</enddate><creator>Geier, Sebastian M.</creator><creator>Mahrholz, Thorsten</creator><creator>Wierach, Peter</creator><creator>Sinapius, Michael</creator><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1488-0910</orcidid><orcidid>https://orcid.org/0000-0001-7941-3630</orcidid></search><sort><creationdate>20180403</creationdate><title>Morphology- and ion size-induced actuation of carbon nanotube architectures</title><author>Geier, Sebastian M. ; Mahrholz, Thorsten ; Wierach, Peter ; Sinapius, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abbreviations</topic><topic>Actuation</topic><topic>actuation mechanism</topic><topic>actuators</topic><topic>Calomel electrode</topic><topic>Carbon</topic><topic>Carbon monoxide</topic><topic>carbon nanotube papers</topic><topic>Carbon nanotubes</topic><topic>Charging</topic><topic>Chemical vapor deposition</topic><topic>Electrical charging</topic><topic>Electrodes</topic><topic>Energy consumption</topic><topic>ion size</topic><topic>Ionic liquids</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotubes</topic><topic>Polydimethylsiloxane</topic><topic>Polymethyl methacrylate</topic><topic>Polypyrroles</topic><topic>Silicone resins</topic><topic>Single wall carbon nanotubes</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geier, Sebastian M.</creatorcontrib><creatorcontrib>Mahrholz, Thorsten</creatorcontrib><creatorcontrib>Wierach, Peter</creatorcontrib><creatorcontrib>Sinapius, Michael</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of smart and nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geier, Sebastian M.</au><au>Mahrholz, Thorsten</au><au>Wierach, Peter</au><au>Sinapius, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology- and ion size-induced actuation of carbon nanotube architectures</atitle><jtitle>International journal of smart and nano materials</jtitle><date>2018-04-03</date><risdate>2018</risdate><volume>9</volume><issue>2</issue><spage>111</spage><epage>134</epage><pages>111-134</pages><issn>1947-5411</issn><eissn>1947-542X</eissn><abstract>Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.Abbreviations: CNT: carbon nanotubes; CV: cyclic voltammetry; CVD: chemical vapor deposition; HiPCO: high pressure carbon monoxide; IL: ionic liquid; MWCNT: multi-walled carbon nanotube; MW: multi-walled; NHE: normal hydrogen electrode; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate; PPy: polypyrrole; PVDF: polyvinylidenefluoride; SCE: saturated calomel electrode; SWCNT: single-walled carbon nanotube; SW: single-walled; 1M: one molar concentration</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/19475411.2018.1457573</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1488-0910</orcidid><orcidid>https://orcid.org/0000-0001-7941-3630</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1947-5411
ispartof International journal of smart and nano materials, 2018-04, Vol.9 (2), p.111-134
issn 1947-5411
1947-542X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b2d0f022436f4f5f9f7a4da3d1811c20
source Taylor & Francis Open Access; IngentaConnect Journals; Free Full-Text Journals in Chemistry
subjects Abbreviations
Actuation
actuation mechanism
actuators
Calomel electrode
Carbon
Carbon monoxide
carbon nanotube papers
Carbon nanotubes
Charging
Chemical vapor deposition
Electrical charging
Electrodes
Energy consumption
ion size
Ionic liquids
Mechanical properties
Modulus of elasticity
Multi wall carbon nanotubes
Nanotubes
Polydimethylsiloxane
Polymethyl methacrylate
Polypyrroles
Silicone resins
Single wall carbon nanotubes
Strain
title Morphology- and ion size-induced actuation of carbon nanotube architectures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology-%20and%20ion%20size-induced%20actuation%20of%20carbon%20nanotube%20architectures&rft.jtitle=International%20journal%20of%20smart%20and%20nano%20materials&rft.au=Geier,%20Sebastian%20M.&rft.date=2018-04-03&rft.volume=9&rft.issue=2&rft.spage=111&rft.epage=134&rft.pages=111-134&rft.issn=1947-5411&rft.eissn=1947-542X&rft_id=info:doi/10.1080/19475411.2018.1457573&rft_dat=%3Cproquest_doaj_%3E2032720209%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2032720209&rft_id=info:pmid/&rfr_iscdi=true