Loading…
Morphology- and ion size-induced actuation of carbon nanotube architectures
Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results i...
Saved in:
Published in: | International journal of smart and nano materials 2018-04, Vol.9 (2), p.111-134 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573 |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573 |
container_end_page | 134 |
container_issue | 2 |
container_start_page | 111 |
container_title | International journal of smart and nano materials |
container_volume | 9 |
creator | Geier, Sebastian M. Mahrholz, Thorsten Wierach, Peter Sinapius, Michael |
description | Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.Abbreviations: CNT: carbon nanotubes; CV: cyclic voltammetry; CVD: chemical vapor deposition; HiPCO: high pressure carbon monoxide; IL: ionic liquid; MWCNT: multi-walled carbon nanotube; MW: multi-walled; NHE: normal hydrogen electrode; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate; PPy: polypyrrole; PVDF: polyvinylidenefluoride; SCE: saturated calomel electrode; SWCNT: single-walled carbon nanotube; SW: single-walled; 1M: one molar concentration |
doi_str_mv | 10.1080/19475411.2018.1457573 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b2d0f022436f4f5f9f7a4da3d1811c20</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b2d0f022436f4f5f9f7a4da3d1811c20</doaj_id><sourcerecordid>2032720209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573</originalsourceid><addsrcrecordid>eNo9UctKA0EQHETBEPMJwoLnjT2v7M5Rgo-g4kXB29A7j2RD3Ikzu4f49U5MTF-6qS6qqylCrilMKdRwS5WopKB0yoDWUypkJSt-RkZ7vJSCfZ6fZkovySSlNeTiTIGcjcjza4jbVdiE5a4ssLNFG7oitT-ubDs7GGcLNP2A_R4OvjAYmzx12IV-aFyB0aza3mVKdOmKXHjcJDc59jH5eLh_nz-VL2-Pi_ndS2m4En2pGBpuuJ_57KhqGqFqoFwg-Jm0aBshpRd5WXvBGVeWOd_wWlEEMLXN343J4qBrA671NrZfGHc6YKv_gBCXGmPfmo3TDbPggTHBs6CXXvkKhUVuaU2pYZC1bg5a2xi-B5d6vQ5D7LJ9nbesYsBAZZY8sEwMKUXnT1cp6H0M-j8GvY9BH2Pgv_kheW0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032720209</pqid></control><display><type>article</type><title>Morphology- and ion size-induced actuation of carbon nanotube architectures</title><source>Taylor & Francis Open Access</source><source>IngentaConnect Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Geier, Sebastian M. ; Mahrholz, Thorsten ; Wierach, Peter ; Sinapius, Michael</creator><creatorcontrib>Geier, Sebastian M. ; Mahrholz, Thorsten ; Wierach, Peter ; Sinapius, Michael</creatorcontrib><description>Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.Abbreviations: CNT: carbon nanotubes; CV: cyclic voltammetry; CVD: chemical vapor deposition; HiPCO: high pressure carbon monoxide; IL: ionic liquid; MWCNT: multi-walled carbon nanotube; MW: multi-walled; NHE: normal hydrogen electrode; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate; PPy: polypyrrole; PVDF: polyvinylidenefluoride; SCE: saturated calomel electrode; SWCNT: single-walled carbon nanotube; SW: single-walled; 1M: one molar concentration</description><identifier>ISSN: 1947-5411</identifier><identifier>EISSN: 1947-542X</identifier><identifier>DOI: 10.1080/19475411.2018.1457573</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Ltd</publisher><subject>Abbreviations ; Actuation ; actuation mechanism ; actuators ; Calomel electrode ; Carbon ; Carbon monoxide ; carbon nanotube papers ; Carbon nanotubes ; Charging ; Chemical vapor deposition ; Electrical charging ; Electrodes ; Energy consumption ; ion size ; Ionic liquids ; Mechanical properties ; Modulus of elasticity ; Multi wall carbon nanotubes ; Nanotubes ; Polydimethylsiloxane ; Polymethyl methacrylate ; Polypyrroles ; Silicone resins ; Single wall carbon nanotubes ; Strain</subject><ispartof>International journal of smart and nano materials, 2018-04, Vol.9 (2), p.111-134</ispartof><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573</citedby><cites>FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573</cites><orcidid>0000-0003-1488-0910 ; 0000-0001-7941-3630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Geier, Sebastian M.</creatorcontrib><creatorcontrib>Mahrholz, Thorsten</creatorcontrib><creatorcontrib>Wierach, Peter</creatorcontrib><creatorcontrib>Sinapius, Michael</creatorcontrib><title>Morphology- and ion size-induced actuation of carbon nanotube architectures</title><title>International journal of smart and nano materials</title><description>Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.Abbreviations: CNT: carbon nanotubes; CV: cyclic voltammetry; CVD: chemical vapor deposition; HiPCO: high pressure carbon monoxide; IL: ionic liquid; MWCNT: multi-walled carbon nanotube; MW: multi-walled; NHE: normal hydrogen electrode; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate; PPy: polypyrrole; PVDF: polyvinylidenefluoride; SCE: saturated calomel electrode; SWCNT: single-walled carbon nanotube; SW: single-walled; 1M: one molar concentration</description><subject>Abbreviations</subject><subject>Actuation</subject><subject>actuation mechanism</subject><subject>actuators</subject><subject>Calomel electrode</subject><subject>Carbon</subject><subject>Carbon monoxide</subject><subject>carbon nanotube papers</subject><subject>Carbon nanotubes</subject><subject>Charging</subject><subject>Chemical vapor deposition</subject><subject>Electrical charging</subject><subject>Electrodes</subject><subject>Energy consumption</subject><subject>ion size</subject><subject>Ionic liquids</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotubes</subject><subject>Polydimethylsiloxane</subject><subject>Polymethyl methacrylate</subject><subject>Polypyrroles</subject><subject>Silicone resins</subject><subject>Single wall carbon nanotubes</subject><subject>Strain</subject><issn>1947-5411</issn><issn>1947-542X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9UctKA0EQHETBEPMJwoLnjT2v7M5Rgo-g4kXB29A7j2RD3Ikzu4f49U5MTF-6qS6qqylCrilMKdRwS5WopKB0yoDWUypkJSt-RkZ7vJSCfZ6fZkovySSlNeTiTIGcjcjza4jbVdiE5a4ssLNFG7oitT-ubDs7GGcLNP2A_R4OvjAYmzx12IV-aFyB0aza3mVKdOmKXHjcJDc59jH5eLh_nz-VL2-Pi_ndS2m4En2pGBpuuJ_57KhqGqFqoFwg-Jm0aBshpRd5WXvBGVeWOd_wWlEEMLXN343J4qBrA671NrZfGHc6YKv_gBCXGmPfmo3TDbPggTHBs6CXXvkKhUVuaU2pYZC1bg5a2xi-B5d6vQ5D7LJ9nbesYsBAZZY8sEwMKUXnT1cp6H0M-j8GvY9BH2Pgv_kheW0</recordid><startdate>20180403</startdate><enddate>20180403</enddate><creator>Geier, Sebastian M.</creator><creator>Mahrholz, Thorsten</creator><creator>Wierach, Peter</creator><creator>Sinapius, Michael</creator><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1488-0910</orcidid><orcidid>https://orcid.org/0000-0001-7941-3630</orcidid></search><sort><creationdate>20180403</creationdate><title>Morphology- and ion size-induced actuation of carbon nanotube architectures</title><author>Geier, Sebastian M. ; Mahrholz, Thorsten ; Wierach, Peter ; Sinapius, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abbreviations</topic><topic>Actuation</topic><topic>actuation mechanism</topic><topic>actuators</topic><topic>Calomel electrode</topic><topic>Carbon</topic><topic>Carbon monoxide</topic><topic>carbon nanotube papers</topic><topic>Carbon nanotubes</topic><topic>Charging</topic><topic>Chemical vapor deposition</topic><topic>Electrical charging</topic><topic>Electrodes</topic><topic>Energy consumption</topic><topic>ion size</topic><topic>Ionic liquids</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotubes</topic><topic>Polydimethylsiloxane</topic><topic>Polymethyl methacrylate</topic><topic>Polypyrroles</topic><topic>Silicone resins</topic><topic>Single wall carbon nanotubes</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geier, Sebastian M.</creatorcontrib><creatorcontrib>Mahrholz, Thorsten</creatorcontrib><creatorcontrib>Wierach, Peter</creatorcontrib><creatorcontrib>Sinapius, Michael</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of smart and nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geier, Sebastian M.</au><au>Mahrholz, Thorsten</au><au>Wierach, Peter</au><au>Sinapius, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology- and ion size-induced actuation of carbon nanotube architectures</atitle><jtitle>International journal of smart and nano materials</jtitle><date>2018-04-03</date><risdate>2018</risdate><volume>9</volume><issue>2</issue><spage>111</spage><epage>134</epage><pages>111-134</pages><issn>1947-5411</issn><eissn>1947-542X</eissn><abstract>Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.Abbreviations: CNT: carbon nanotubes; CV: cyclic voltammetry; CVD: chemical vapor deposition; HiPCO: high pressure carbon monoxide; IL: ionic liquid; MWCNT: multi-walled carbon nanotube; MW: multi-walled; NHE: normal hydrogen electrode; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate; PPy: polypyrrole; PVDF: polyvinylidenefluoride; SCE: saturated calomel electrode; SWCNT: single-walled carbon nanotube; SW: single-walled; 1M: one molar concentration</abstract><cop>Abingdon</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/19475411.2018.1457573</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1488-0910</orcidid><orcidid>https://orcid.org/0000-0001-7941-3630</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1947-5411 |
ispartof | International journal of smart and nano materials, 2018-04, Vol.9 (2), p.111-134 |
issn | 1947-5411 1947-542X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b2d0f022436f4f5f9f7a4da3d1811c20 |
source | Taylor & Francis Open Access; IngentaConnect Journals; Free Full-Text Journals in Chemistry |
subjects | Abbreviations Actuation actuation mechanism actuators Calomel electrode Carbon Carbon monoxide carbon nanotube papers Carbon nanotubes Charging Chemical vapor deposition Electrical charging Electrodes Energy consumption ion size Ionic liquids Mechanical properties Modulus of elasticity Multi wall carbon nanotubes Nanotubes Polydimethylsiloxane Polymethyl methacrylate Polypyrroles Silicone resins Single wall carbon nanotubes Strain |
title | Morphology- and ion size-induced actuation of carbon nanotube architectures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology-%20and%20ion%20size-induced%20actuation%20of%20carbon%20nanotube%20architectures&rft.jtitle=International%20journal%20of%20smart%20and%20nano%20materials&rft.au=Geier,%20Sebastian%20M.&rft.date=2018-04-03&rft.volume=9&rft.issue=2&rft.spage=111&rft.epage=134&rft.pages=111-134&rft.issn=1947-5411&rft.eissn=1947-542X&rft_id=info:doi/10.1080/19475411.2018.1457573&rft_dat=%3Cproquest_doaj_%3E2032720209%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-92ac3c3f6f4117bb4980134a0f65dadb455f46f48f43239d2efb3891a00c8d573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2032720209&rft_id=info:pmid/&rfr_iscdi=true |