Loading…

Assessment of metals in PM10 filters and Araucaria heterophylla needles in two areas of Quito, Ecuador

The reliability of Araucaria heterophylla needles as a biomonitor was evaluated by analyzing the concentration of metals in PM10 filters and in Araucaria heterophylla needles. The sampling campaign was carried out at two sites in the city of Quito, Ecuador, in 2017–2019. Concentrations of Cr, Cu, K,...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2021-01, Vol.7 (1), p.e05966-e05966, Article e05966
Main Authors: Mancheno, Tabatha, Zalakeviciute, Rasa, González-Rodríguez, Mario, Alexandrino, Katiuska
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The reliability of Araucaria heterophylla needles as a biomonitor was evaluated by analyzing the concentration of metals in PM10 filters and in Araucaria heterophylla needles. The sampling campaign was carried out at two sites in the city of Quito, Ecuador, in 2017–2019. Concentrations of Cr, Cu, K, Mn, Pb, Zn, Ca, Fe, Al and Mg were determined in PM10 filters and in Araucaria heterophylla needles using an Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES). The annual mean concentrations of PM10 ranged between 24.9 and 26.3 μg m−3, exceeding the limit established by the World Health Organization (20 μg m−3). Statistical analyses, performed for the PM10 filters, showed that dust resuspension and anthropogenic activities were important sources for PM10 emissions in the city. Metals related to natural emissions (Ca, Mg, K, Al and Fe) dominated in both types of samples, while the minor metals were those related to anthropogenic emissions (Zn, Cu, Cr and Pb). The former were positively associated with the needle samples, while the latter were associated with PM10 filters. This work not only improved scientific knowledge on the concentrations of PM10 and metals in the Andean city of Quito, but also greatly contributed to the progress of research on the use of Araucaria heterophylla needles as a biomonitor. Chemical elements; Ecuador; Pollution; Quito
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2021.e05966