Loading…

Expression of the ripAA Gene in the Soilborne Pseudomonas mosselii Can Promote the Control Efficacy against Tobacco Bacterial Wilt

The environmental bacterium Pseudomonas mosselii produces antagonistic secondary metabolites with inhibitory effects on multiple plant pathogens, including Ralstonia solanacearum, the causal agent of bacterial wilt. In this study, an engineered P. mosselii strain was generated to express R. solanace...

Full description

Saved in:
Bibliographic Details
Published in:Biology (Basel, Switzerland) Switzerland), 2022-08, Vol.11 (8), p.1170
Main Authors: Zhuo, Tao, Chen, Shiting, Wang, Dandan, Fan, Xiaojing, Zhang, Xiaofeng, Zou, Huasong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The environmental bacterium Pseudomonas mosselii produces antagonistic secondary metabolites with inhibitory effects on multiple plant pathogens, including Ralstonia solanacearum, the causal agent of bacterial wilt. In this study, an engineered P. mosselii strain was generated to express R. solanacearum ripAA, which determines the incompatible interactions with tobacco plants. The ripAA gene, together with its native promoter, was integrated into the P. mosselii chromosome. The resulting strain showed no difference in antimicrobial activity against R. solanacearum. Promoter-LacZ fusion and RT-PCR experiments demonstrated that the ripAA gene was transcribed in culture media. Compared with that of the wild type, the engineered strain reduced the disease index by 9.1% for bacterial wilt on tobacco plants. A transcriptome analysis was performed to identify differentially expressed genes in tobacco plants, and the results revealed that ethylene- and jasmonate-dependent defense signaling pathways were induced. These data demonstrates that the engineered P. mosselii expressing ripAA can improve biological control against tobacco bacterial wilt by the activation of host defense responses.
ISSN:2079-7737
2079-7737
DOI:10.3390/biology11081170