Loading…

Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region

Aerosol absorption is a key property to assess the radiative impacts of aerosols on climate at both global and regional scales. The aerosol physico-chemical and optical properties remain not sufficiently constrained in climate models, with difficulties to properly represent both the aerosol load and...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2021-12, Vol.21 (23), p.17775-17805
Main Authors: Siméon, Alexandre, Waquet, Fabien, Péré, Jean-Christophe, Ducos, Fabrice, Thieuleux, François, Peers, Fanny, Turquety, Solène, Chiapello, Isabelle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3
cites cdi_FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3
container_end_page 17805
container_issue 23
container_start_page 17775
container_title Atmospheric chemistry and physics
container_volume 21
creator Siméon, Alexandre
Waquet, Fabien
Péré, Jean-Christophe
Ducos, Fabrice
Thieuleux, François
Peers, Fanny
Turquety, Solène
Chiapello, Isabelle
description Aerosol absorption is a key property to assess the radiative impacts of aerosols on climate at both global and regional scales. The aerosol physico-chemical and optical properties remain not sufficiently constrained in climate models, with difficulties to properly represent both the aerosol load and their absorption properties in clear and cloudy scenes, especially for absorbing biomass burning aerosols (BBA). In this study we focus on biomass burning (BB) particle plumes transported above clouds over the southeast Atlantic (SEA) region off the southwest coast of Africa, in order to improve the representation of their physico-chemical and absorption properties. The methodology is based on aerosol regional numerical simulations from the WRF-Chem coupled meteorology–chemistry model combined with a detailed inventory of BB emissions and various sets of innovative aerosol remote sensing observations, both in clear and cloudy skies from the POLDER-3/PARASOL space sensor. Current literature indicates that some organic aerosol compounds (OC), called brown carbon (BrOC), primarily emitted by biomass combustion absorb the ultraviolet-blue radiation more efficiently than pure black carbon (BC). We exploit this specificity by comparing the spectral dependence of the aerosol single scattering albedo (SSA) derived from the POLDER-3 satellite observations in the 443–1020 nm wavelength range with the SSA simulated for different proportions of BC, OC and BrOC at the source level, considering the homogeneous internal mixing state of particles. These numerical simulation experiments are based on two main constraints: maintaining a realistic aerosol optical depth both in clear and above cloudy scenes and a realistic BC/OC mass ratio. Modelling experiments are presented and discussed to link the chemical composition with the absorption properties of BBA and to provide estimates of the relative proportions of black, organic and brown carbon in the African BBA plumes transported over the SEA region for July 2008. The absorbing fraction of organic aerosols in the BBA plumes, i.e. BrOC, is estimated at 2 % to 3 %. The simulated mean SSA are 0.81 (565 nm) and 0.84 (550 nm) in clear and above cloudy scenes respectively, in good agreement with those retrieved by POLDER-3 (0.85±0.05 at 565 nm in clear sky and at 550 nm above clouds) for the studied period.
doi_str_mv 10.5194/acp-21-17775-2021
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b300f161707844dba7e83acbce78eae9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A685594808</galeid><doaj_id>oai_doaj_org_article_b300f161707844dba7e83acbce78eae9</doaj_id><sourcerecordid>A685594808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3</originalsourceid><addsrcrecordid>eNptkl2L1DAUhosouK7-AO8CXil0TZo2SS-HcT8GBlbGBS_DaXraydA2Y5IO-l_8sWZnltUBycUJh-e8nI83y94zelWxuvwMZp8XLGdSyiovaMFeZBdMKJpLXpQv__m_zt6EsKO0qCgrL7LfSzc2drJTT77er79cb3JOAkQcBhuRuCagP0C0bgoEppZ839zkyy2OZJpH9NbAQIId5-EJiY60KX1A0lg3Qgikmf1RHNC74Aay926PPloMxB3Qk7hFEtycAoRIFnGAKVpDPPZJ8G32qoMh4LuneJk93Fw_LO_y9f3tarlY56ZiKubAStEyIRinnekoqqYFVRVccVEzWVQV8oaq1jSspKrrWg6SVkoKw5iQdccvs9VJtnWw03tvR_C_tAOrjwnnew2pZTOgbjilHRNMUqnKsm1AouJgGoNSIWCdtD6dtLYwnEndLdbaTmHWlAslOFUHluAPJzht5ceMIeqdS_tKo-pCUCEVLYX4S_WQOrBT56IHM9pg9EKoqqpLRVWirv5DpdfiaI2bsLMpf1bw8awgMRF_xh7mEPTq2-acZSfWpCsGj93zaIzqR__p5D9dMH30n370H_8DoPPNZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606780466</pqid></control><display><type>article</type><title>Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Siméon, Alexandre ; Waquet, Fabien ; Péré, Jean-Christophe ; Ducos, Fabrice ; Thieuleux, François ; Peers, Fanny ; Turquety, Solène ; Chiapello, Isabelle</creator><creatorcontrib>Siméon, Alexandre ; Waquet, Fabien ; Péré, Jean-Christophe ; Ducos, Fabrice ; Thieuleux, François ; Peers, Fanny ; Turquety, Solène ; Chiapello, Isabelle</creatorcontrib><description>Aerosol absorption is a key property to assess the radiative impacts of aerosols on climate at both global and regional scales. The aerosol physico-chemical and optical properties remain not sufficiently constrained in climate models, with difficulties to properly represent both the aerosol load and their absorption properties in clear and cloudy scenes, especially for absorbing biomass burning aerosols (BBA). In this study we focus on biomass burning (BB) particle plumes transported above clouds over the southeast Atlantic (SEA) region off the southwest coast of Africa, in order to improve the representation of their physico-chemical and absorption properties. The methodology is based on aerosol regional numerical simulations from the WRF-Chem coupled meteorology–chemistry model combined with a detailed inventory of BB emissions and various sets of innovative aerosol remote sensing observations, both in clear and cloudy skies from the POLDER-3/PARASOL space sensor. Current literature indicates that some organic aerosol compounds (OC), called brown carbon (BrOC), primarily emitted by biomass combustion absorb the ultraviolet-blue radiation more efficiently than pure black carbon (BC). We exploit this specificity by comparing the spectral dependence of the aerosol single scattering albedo (SSA) derived from the POLDER-3 satellite observations in the 443–1020 nm wavelength range with the SSA simulated for different proportions of BC, OC and BrOC at the source level, considering the homogeneous internal mixing state of particles. These numerical simulation experiments are based on two main constraints: maintaining a realistic aerosol optical depth both in clear and above cloudy scenes and a realistic BC/OC mass ratio. Modelling experiments are presented and discussed to link the chemical composition with the absorption properties of BBA and to provide estimates of the relative proportions of black, organic and brown carbon in the African BBA plumes transported over the SEA region for July 2008. The absorbing fraction of organic aerosols in the BBA plumes, i.e. BrOC, is estimated at 2 % to 3 %. The simulated mean SSA are 0.81 (565 nm) and 0.84 (550 nm) in clear and above cloudy scenes respectively, in good agreement with those retrieved by POLDER-3 (0.85±0.05 at 565 nm in clear sky and at 550 nm above clouds) for the studied period.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-21-17775-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Absorption ; Aerosol absorption ; Aerosol effects ; Aerosol optical depth ; Aerosol optical properties ; Aerosol properties ; Aerosols ; Albedo ; Analysis ; Biomass ; Biomass burning ; Black carbon ; Burning ; Carbon ; Chemical composition ; Clear sky ; Climate ; Climate models ; Clouds ; Coastal zone ; Combustion ; Constraints ; Emission inventories ; Emissions ; Mathematical models ; Meteorology ; Numerical analysis ; Numerical simulations ; Numerical weather forecasting ; Optical analysis ; Optical properties ; Optical thickness ; Plumes ; Polders ; Radiation ; Remote sensing ; Satellite observation ; Satellites ; Sciences of the Universe ; Simulation ; Specificity ; Ultraviolet radiation ; Wavelength ; Weather</subject><ispartof>Atmospheric chemistry and physics, 2021-12, Vol.21 (23), p.17775-17805</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3</citedby><cites>FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3</cites><orcidid>0000-0002-2796-8738 ; 0000-0003-2683-8445 ; 0000-0002-0398-547X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2606780466/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2606780466?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2096,25731,27901,27902,36989,44566,74869</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03686308$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Siméon, Alexandre</creatorcontrib><creatorcontrib>Waquet, Fabien</creatorcontrib><creatorcontrib>Péré, Jean-Christophe</creatorcontrib><creatorcontrib>Ducos, Fabrice</creatorcontrib><creatorcontrib>Thieuleux, François</creatorcontrib><creatorcontrib>Peers, Fanny</creatorcontrib><creatorcontrib>Turquety, Solène</creatorcontrib><creatorcontrib>Chiapello, Isabelle</creatorcontrib><title>Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region</title><title>Atmospheric chemistry and physics</title><description>Aerosol absorption is a key property to assess the radiative impacts of aerosols on climate at both global and regional scales. The aerosol physico-chemical and optical properties remain not sufficiently constrained in climate models, with difficulties to properly represent both the aerosol load and their absorption properties in clear and cloudy scenes, especially for absorbing biomass burning aerosols (BBA). In this study we focus on biomass burning (BB) particle plumes transported above clouds over the southeast Atlantic (SEA) region off the southwest coast of Africa, in order to improve the representation of their physico-chemical and absorption properties. The methodology is based on aerosol regional numerical simulations from the WRF-Chem coupled meteorology–chemistry model combined with a detailed inventory of BB emissions and various sets of innovative aerosol remote sensing observations, both in clear and cloudy skies from the POLDER-3/PARASOL space sensor. Current literature indicates that some organic aerosol compounds (OC), called brown carbon (BrOC), primarily emitted by biomass combustion absorb the ultraviolet-blue radiation more efficiently than pure black carbon (BC). We exploit this specificity by comparing the spectral dependence of the aerosol single scattering albedo (SSA) derived from the POLDER-3 satellite observations in the 443–1020 nm wavelength range with the SSA simulated for different proportions of BC, OC and BrOC at the source level, considering the homogeneous internal mixing state of particles. These numerical simulation experiments are based on two main constraints: maintaining a realistic aerosol optical depth both in clear and above cloudy scenes and a realistic BC/OC mass ratio. Modelling experiments are presented and discussed to link the chemical composition with the absorption properties of BBA and to provide estimates of the relative proportions of black, organic and brown carbon in the African BBA plumes transported over the SEA region for July 2008. The absorbing fraction of organic aerosols in the BBA plumes, i.e. BrOC, is estimated at 2 % to 3 %. The simulated mean SSA are 0.81 (565 nm) and 0.84 (550 nm) in clear and above cloudy scenes respectively, in good agreement with those retrieved by POLDER-3 (0.85±0.05 at 565 nm in clear sky and at 550 nm above clouds) for the studied period.</description><subject>Absorption</subject><subject>Aerosol absorption</subject><subject>Aerosol effects</subject><subject>Aerosol optical depth</subject><subject>Aerosol optical properties</subject><subject>Aerosol properties</subject><subject>Aerosols</subject><subject>Albedo</subject><subject>Analysis</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Black carbon</subject><subject>Burning</subject><subject>Carbon</subject><subject>Chemical composition</subject><subject>Clear sky</subject><subject>Climate</subject><subject>Climate models</subject><subject>Clouds</subject><subject>Coastal zone</subject><subject>Combustion</subject><subject>Constraints</subject><subject>Emission inventories</subject><subject>Emissions</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Numerical analysis</subject><subject>Numerical simulations</subject><subject>Numerical weather forecasting</subject><subject>Optical analysis</subject><subject>Optical properties</subject><subject>Optical thickness</subject><subject>Plumes</subject><subject>Polders</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sciences of the Universe</subject><subject>Simulation</subject><subject>Specificity</subject><subject>Ultraviolet radiation</subject><subject>Wavelength</subject><subject>Weather</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl2L1DAUhosouK7-AO8CXil0TZo2SS-HcT8GBlbGBS_DaXraydA2Y5IO-l_8sWZnltUBycUJh-e8nI83y94zelWxuvwMZp8XLGdSyiovaMFeZBdMKJpLXpQv__m_zt6EsKO0qCgrL7LfSzc2drJTT77er79cb3JOAkQcBhuRuCagP0C0bgoEppZ839zkyy2OZJpH9NbAQIId5-EJiY60KX1A0lg3Qgikmf1RHNC74Aay926PPloMxB3Qk7hFEtycAoRIFnGAKVpDPPZJ8G32qoMh4LuneJk93Fw_LO_y9f3tarlY56ZiKubAStEyIRinnekoqqYFVRVccVEzWVQV8oaq1jSspKrrWg6SVkoKw5iQdccvs9VJtnWw03tvR_C_tAOrjwnnew2pZTOgbjilHRNMUqnKsm1AouJgGoNSIWCdtD6dtLYwnEndLdbaTmHWlAslOFUHluAPJzht5ceMIeqdS_tKo-pCUCEVLYX4S_WQOrBT56IHM9pg9EKoqqpLRVWirv5DpdfiaI2bsLMpf1bw8awgMRF_xh7mEPTq2-acZSfWpCsGj93zaIzqR__p5D9dMH30n370H_8DoPPNZA</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Siméon, Alexandre</creator><creator>Waquet, Fabien</creator><creator>Péré, Jean-Christophe</creator><creator>Ducos, Fabrice</creator><creator>Thieuleux, François</creator><creator>Peers, Fanny</creator><creator>Turquety, Solène</creator><creator>Chiapello, Isabelle</creator><general>Copernicus GmbH</general><general>European Geosciences Union</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2796-8738</orcidid><orcidid>https://orcid.org/0000-0003-2683-8445</orcidid><orcidid>https://orcid.org/0000-0002-0398-547X</orcidid></search><sort><creationdate>20211206</creationdate><title>Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region</title><author>Siméon, Alexandre ; Waquet, Fabien ; Péré, Jean-Christophe ; Ducos, Fabrice ; Thieuleux, François ; Peers, Fanny ; Turquety, Solène ; Chiapello, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Aerosol absorption</topic><topic>Aerosol effects</topic><topic>Aerosol optical depth</topic><topic>Aerosol optical properties</topic><topic>Aerosol properties</topic><topic>Aerosols</topic><topic>Albedo</topic><topic>Analysis</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Black carbon</topic><topic>Burning</topic><topic>Carbon</topic><topic>Chemical composition</topic><topic>Clear sky</topic><topic>Climate</topic><topic>Climate models</topic><topic>Clouds</topic><topic>Coastal zone</topic><topic>Combustion</topic><topic>Constraints</topic><topic>Emission inventories</topic><topic>Emissions</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Numerical analysis</topic><topic>Numerical simulations</topic><topic>Numerical weather forecasting</topic><topic>Optical analysis</topic><topic>Optical properties</topic><topic>Optical thickness</topic><topic>Plumes</topic><topic>Polders</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sciences of the Universe</topic><topic>Simulation</topic><topic>Specificity</topic><topic>Ultraviolet radiation</topic><topic>Wavelength</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siméon, Alexandre</creatorcontrib><creatorcontrib>Waquet, Fabien</creatorcontrib><creatorcontrib>Péré, Jean-Christophe</creatorcontrib><creatorcontrib>Ducos, Fabrice</creatorcontrib><creatorcontrib>Thieuleux, François</creatorcontrib><creatorcontrib>Peers, Fanny</creatorcontrib><creatorcontrib>Turquety, Solène</creatorcontrib><creatorcontrib>Chiapello, Isabelle</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siméon, Alexandre</au><au>Waquet, Fabien</au><au>Péré, Jean-Christophe</au><au>Ducos, Fabrice</au><au>Thieuleux, François</au><au>Peers, Fanny</au><au>Turquety, Solène</au><au>Chiapello, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2021-12-06</date><risdate>2021</risdate><volume>21</volume><issue>23</issue><spage>17775</spage><epage>17805</epage><pages>17775-17805</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Aerosol absorption is a key property to assess the radiative impacts of aerosols on climate at both global and regional scales. The aerosol physico-chemical and optical properties remain not sufficiently constrained in climate models, with difficulties to properly represent both the aerosol load and their absorption properties in clear and cloudy scenes, especially for absorbing biomass burning aerosols (BBA). In this study we focus on biomass burning (BB) particle plumes transported above clouds over the southeast Atlantic (SEA) region off the southwest coast of Africa, in order to improve the representation of their physico-chemical and absorption properties. The methodology is based on aerosol regional numerical simulations from the WRF-Chem coupled meteorology–chemistry model combined with a detailed inventory of BB emissions and various sets of innovative aerosol remote sensing observations, both in clear and cloudy skies from the POLDER-3/PARASOL space sensor. Current literature indicates that some organic aerosol compounds (OC), called brown carbon (BrOC), primarily emitted by biomass combustion absorb the ultraviolet-blue radiation more efficiently than pure black carbon (BC). We exploit this specificity by comparing the spectral dependence of the aerosol single scattering albedo (SSA) derived from the POLDER-3 satellite observations in the 443–1020 nm wavelength range with the SSA simulated for different proportions of BC, OC and BrOC at the source level, considering the homogeneous internal mixing state of particles. These numerical simulation experiments are based on two main constraints: maintaining a realistic aerosol optical depth both in clear and above cloudy scenes and a realistic BC/OC mass ratio. Modelling experiments are presented and discussed to link the chemical composition with the absorption properties of BBA and to provide estimates of the relative proportions of black, organic and brown carbon in the African BBA plumes transported over the SEA region for July 2008. The absorbing fraction of organic aerosols in the BBA plumes, i.e. BrOC, is estimated at 2 % to 3 %. The simulated mean SSA are 0.81 (565 nm) and 0.84 (550 nm) in clear and above cloudy scenes respectively, in good agreement with those retrieved by POLDER-3 (0.85±0.05 at 565 nm in clear sky and at 550 nm above clouds) for the studied period.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-21-17775-2021</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2796-8738</orcidid><orcidid>https://orcid.org/0000-0003-2683-8445</orcidid><orcidid>https://orcid.org/0000-0002-0398-547X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2021-12, Vol.21 (23), p.17775-17805
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b300f161707844dba7e83acbce78eae9
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
subjects Absorption
Aerosol absorption
Aerosol effects
Aerosol optical depth
Aerosol optical properties
Aerosol properties
Aerosols
Albedo
Analysis
Biomass
Biomass burning
Black carbon
Burning
Carbon
Chemical composition
Clear sky
Climate
Climate models
Clouds
Coastal zone
Combustion
Constraints
Emission inventories
Emissions
Mathematical models
Meteorology
Numerical analysis
Numerical simulations
Numerical weather forecasting
Optical analysis
Optical properties
Optical thickness
Plumes
Polders
Radiation
Remote sensing
Satellite observation
Satellites
Sciences of the Universe
Simulation
Specificity
Ultraviolet radiation
Wavelength
Weather
title Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20POLDER-3%20satellite%20observations%20and%20WRF-Chem%20numerical%20simulations%20to%20derive%20biomass%20burning%20aerosol%20properties%20over%20the%20southeast%20Atlantic%20region&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Sim%C3%A9on,%20Alexandre&rft.date=2021-12-06&rft.volume=21&rft.issue=23&rft.spage=17775&rft.epage=17805&rft.pages=17775-17805&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-21-17775-2021&rft_dat=%3Cgale_doaj_%3EA685594808%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2606780466&rft_id=info:pmid/&rft_galeid=A685594808&rfr_iscdi=true