Loading…
Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region
Aerosol absorption is a key property to assess the radiative impacts of aerosols on climate at both global and regional scales. The aerosol physico-chemical and optical properties remain not sufficiently constrained in climate models, with difficulties to properly represent both the aerosol load and...
Saved in:
Published in: | Atmospheric chemistry and physics 2021-12, Vol.21 (23), p.17775-17805 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3 |
container_end_page | 17805 |
container_issue | 23 |
container_start_page | 17775 |
container_title | Atmospheric chemistry and physics |
container_volume | 21 |
creator | Siméon, Alexandre Waquet, Fabien Péré, Jean-Christophe Ducos, Fabrice Thieuleux, François Peers, Fanny Turquety, Solène Chiapello, Isabelle |
description | Aerosol absorption is a key property to assess the
radiative impacts of aerosols on climate at both global and regional scales.
The aerosol physico-chemical and optical properties remain not sufficiently
constrained in climate models, with difficulties to properly represent both
the aerosol load and their absorption properties in clear and cloudy scenes,
especially for absorbing biomass burning aerosols (BBA). In this study we
focus on biomass burning (BB) particle plumes transported above clouds over
the southeast Atlantic (SEA) region off the southwest coast of Africa, in
order to improve the representation of their physico-chemical and absorption
properties. The methodology is based on aerosol regional numerical
simulations from the WRF-Chem coupled meteorology–chemistry model combined
with a detailed inventory of BB emissions and various sets of innovative
aerosol remote sensing observations, both in clear and cloudy skies from the
POLDER-3/PARASOL space sensor. Current literature indicates that some
organic aerosol compounds (OC), called brown carbon (BrOC), primarily
emitted by biomass combustion absorb the ultraviolet-blue radiation more
efficiently than pure black carbon (BC). We exploit this specificity by
comparing the spectral dependence of the aerosol single scattering albedo
(SSA) derived from the POLDER-3 satellite observations in the 443–1020 nm
wavelength range with the SSA simulated for different proportions of BC, OC
and BrOC at the source level, considering the homogeneous internal mixing
state of particles. These numerical simulation experiments are based on two
main constraints: maintaining a realistic aerosol optical depth both in
clear and above cloudy scenes and a realistic BC/OC mass ratio. Modelling
experiments are presented and discussed to link the chemical composition
with the absorption properties of BBA and to provide estimates of the relative proportions of black, organic and brown carbon in the African BBA
plumes transported over the SEA region for July 2008. The absorbing fraction of organic aerosols in the BBA plumes, i.e. BrOC, is estimated at 2 % to 3 %. The simulated mean SSA are 0.81 (565 nm) and 0.84 (550 nm) in clear and above cloudy scenes respectively, in good agreement with those retrieved by POLDER-3 (0.85±0.05 at 565 nm in clear sky and at 550 nm above clouds) for the studied period. |
doi_str_mv | 10.5194/acp-21-17775-2021 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b300f161707844dba7e83acbce78eae9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A685594808</galeid><doaj_id>oai_doaj_org_article_b300f161707844dba7e83acbce78eae9</doaj_id><sourcerecordid>A685594808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3</originalsourceid><addsrcrecordid>eNptkl2L1DAUhosouK7-AO8CXil0TZo2SS-HcT8GBlbGBS_DaXraydA2Y5IO-l_8sWZnltUBycUJh-e8nI83y94zelWxuvwMZp8XLGdSyiovaMFeZBdMKJpLXpQv__m_zt6EsKO0qCgrL7LfSzc2drJTT77er79cb3JOAkQcBhuRuCagP0C0bgoEppZ839zkyy2OZJpH9NbAQIId5-EJiY60KX1A0lg3Qgikmf1RHNC74Aay926PPloMxB3Qk7hFEtycAoRIFnGAKVpDPPZJ8G32qoMh4LuneJk93Fw_LO_y9f3tarlY56ZiKubAStEyIRinnekoqqYFVRVccVEzWVQV8oaq1jSspKrrWg6SVkoKw5iQdccvs9VJtnWw03tvR_C_tAOrjwnnew2pZTOgbjilHRNMUqnKsm1AouJgGoNSIWCdtD6dtLYwnEndLdbaTmHWlAslOFUHluAPJzht5ceMIeqdS_tKo-pCUCEVLYX4S_WQOrBT56IHM9pg9EKoqqpLRVWirv5DpdfiaI2bsLMpf1bw8awgMRF_xh7mEPTq2-acZSfWpCsGj93zaIzqR__p5D9dMH30n370H_8DoPPNZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606780466</pqid></control><display><type>article</type><title>Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Siméon, Alexandre ; Waquet, Fabien ; Péré, Jean-Christophe ; Ducos, Fabrice ; Thieuleux, François ; Peers, Fanny ; Turquety, Solène ; Chiapello, Isabelle</creator><creatorcontrib>Siméon, Alexandre ; Waquet, Fabien ; Péré, Jean-Christophe ; Ducos, Fabrice ; Thieuleux, François ; Peers, Fanny ; Turquety, Solène ; Chiapello, Isabelle</creatorcontrib><description>Aerosol absorption is a key property to assess the
radiative impacts of aerosols on climate at both global and regional scales.
The aerosol physico-chemical and optical properties remain not sufficiently
constrained in climate models, with difficulties to properly represent both
the aerosol load and their absorption properties in clear and cloudy scenes,
especially for absorbing biomass burning aerosols (BBA). In this study we
focus on biomass burning (BB) particle plumes transported above clouds over
the southeast Atlantic (SEA) region off the southwest coast of Africa, in
order to improve the representation of their physico-chemical and absorption
properties. The methodology is based on aerosol regional numerical
simulations from the WRF-Chem coupled meteorology–chemistry model combined
with a detailed inventory of BB emissions and various sets of innovative
aerosol remote sensing observations, both in clear and cloudy skies from the
POLDER-3/PARASOL space sensor. Current literature indicates that some
organic aerosol compounds (OC), called brown carbon (BrOC), primarily
emitted by biomass combustion absorb the ultraviolet-blue radiation more
efficiently than pure black carbon (BC). We exploit this specificity by
comparing the spectral dependence of the aerosol single scattering albedo
(SSA) derived from the POLDER-3 satellite observations in the 443–1020 nm
wavelength range with the SSA simulated for different proportions of BC, OC
and BrOC at the source level, considering the homogeneous internal mixing
state of particles. These numerical simulation experiments are based on two
main constraints: maintaining a realistic aerosol optical depth both in
clear and above cloudy scenes and a realistic BC/OC mass ratio. Modelling
experiments are presented and discussed to link the chemical composition
with the absorption properties of BBA and to provide estimates of the relative proportions of black, organic and brown carbon in the African BBA
plumes transported over the SEA region for July 2008. The absorbing fraction of organic aerosols in the BBA plumes, i.e. BrOC, is estimated at 2 % to 3 %. The simulated mean SSA are 0.81 (565 nm) and 0.84 (550 nm) in clear and above cloudy scenes respectively, in good agreement with those retrieved by POLDER-3 (0.85±0.05 at 565 nm in clear sky and at 550 nm above clouds) for the studied period.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-21-17775-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Absorption ; Aerosol absorption ; Aerosol effects ; Aerosol optical depth ; Aerosol optical properties ; Aerosol properties ; Aerosols ; Albedo ; Analysis ; Biomass ; Biomass burning ; Black carbon ; Burning ; Carbon ; Chemical composition ; Clear sky ; Climate ; Climate models ; Clouds ; Coastal zone ; Combustion ; Constraints ; Emission inventories ; Emissions ; Mathematical models ; Meteorology ; Numerical analysis ; Numerical simulations ; Numerical weather forecasting ; Optical analysis ; Optical properties ; Optical thickness ; Plumes ; Polders ; Radiation ; Remote sensing ; Satellite observation ; Satellites ; Sciences of the Universe ; Simulation ; Specificity ; Ultraviolet radiation ; Wavelength ; Weather</subject><ispartof>Atmospheric chemistry and physics, 2021-12, Vol.21 (23), p.17775-17805</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3</citedby><cites>FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3</cites><orcidid>0000-0002-2796-8738 ; 0000-0003-2683-8445 ; 0000-0002-0398-547X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2606780466/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2606780466?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2096,25731,27901,27902,36989,44566,74869</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03686308$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Siméon, Alexandre</creatorcontrib><creatorcontrib>Waquet, Fabien</creatorcontrib><creatorcontrib>Péré, Jean-Christophe</creatorcontrib><creatorcontrib>Ducos, Fabrice</creatorcontrib><creatorcontrib>Thieuleux, François</creatorcontrib><creatorcontrib>Peers, Fanny</creatorcontrib><creatorcontrib>Turquety, Solène</creatorcontrib><creatorcontrib>Chiapello, Isabelle</creatorcontrib><title>Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region</title><title>Atmospheric chemistry and physics</title><description>Aerosol absorption is a key property to assess the
radiative impacts of aerosols on climate at both global and regional scales.
The aerosol physico-chemical and optical properties remain not sufficiently
constrained in climate models, with difficulties to properly represent both
the aerosol load and their absorption properties in clear and cloudy scenes,
especially for absorbing biomass burning aerosols (BBA). In this study we
focus on biomass burning (BB) particle plumes transported above clouds over
the southeast Atlantic (SEA) region off the southwest coast of Africa, in
order to improve the representation of their physico-chemical and absorption
properties. The methodology is based on aerosol regional numerical
simulations from the WRF-Chem coupled meteorology–chemistry model combined
with a detailed inventory of BB emissions and various sets of innovative
aerosol remote sensing observations, both in clear and cloudy skies from the
POLDER-3/PARASOL space sensor. Current literature indicates that some
organic aerosol compounds (OC), called brown carbon (BrOC), primarily
emitted by biomass combustion absorb the ultraviolet-blue radiation more
efficiently than pure black carbon (BC). We exploit this specificity by
comparing the spectral dependence of the aerosol single scattering albedo
(SSA) derived from the POLDER-3 satellite observations in the 443–1020 nm
wavelength range with the SSA simulated for different proportions of BC, OC
and BrOC at the source level, considering the homogeneous internal mixing
state of particles. These numerical simulation experiments are based on two
main constraints: maintaining a realistic aerosol optical depth both in
clear and above cloudy scenes and a realistic BC/OC mass ratio. Modelling
experiments are presented and discussed to link the chemical composition
with the absorption properties of BBA and to provide estimates of the relative proportions of black, organic and brown carbon in the African BBA
plumes transported over the SEA region for July 2008. The absorbing fraction of organic aerosols in the BBA plumes, i.e. BrOC, is estimated at 2 % to 3 %. The simulated mean SSA are 0.81 (565 nm) and 0.84 (550 nm) in clear and above cloudy scenes respectively, in good agreement with those retrieved by POLDER-3 (0.85±0.05 at 565 nm in clear sky and at 550 nm above clouds) for the studied period.</description><subject>Absorption</subject><subject>Aerosol absorption</subject><subject>Aerosol effects</subject><subject>Aerosol optical depth</subject><subject>Aerosol optical properties</subject><subject>Aerosol properties</subject><subject>Aerosols</subject><subject>Albedo</subject><subject>Analysis</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Black carbon</subject><subject>Burning</subject><subject>Carbon</subject><subject>Chemical composition</subject><subject>Clear sky</subject><subject>Climate</subject><subject>Climate models</subject><subject>Clouds</subject><subject>Coastal zone</subject><subject>Combustion</subject><subject>Constraints</subject><subject>Emission inventories</subject><subject>Emissions</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Numerical analysis</subject><subject>Numerical simulations</subject><subject>Numerical weather forecasting</subject><subject>Optical analysis</subject><subject>Optical properties</subject><subject>Optical thickness</subject><subject>Plumes</subject><subject>Polders</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sciences of the Universe</subject><subject>Simulation</subject><subject>Specificity</subject><subject>Ultraviolet radiation</subject><subject>Wavelength</subject><subject>Weather</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl2L1DAUhosouK7-AO8CXil0TZo2SS-HcT8GBlbGBS_DaXraydA2Y5IO-l_8sWZnltUBycUJh-e8nI83y94zelWxuvwMZp8XLGdSyiovaMFeZBdMKJpLXpQv__m_zt6EsKO0qCgrL7LfSzc2drJTT77er79cb3JOAkQcBhuRuCagP0C0bgoEppZ839zkyy2OZJpH9NbAQIId5-EJiY60KX1A0lg3Qgikmf1RHNC74Aay926PPloMxB3Qk7hFEtycAoRIFnGAKVpDPPZJ8G32qoMh4LuneJk93Fw_LO_y9f3tarlY56ZiKubAStEyIRinnekoqqYFVRVccVEzWVQV8oaq1jSspKrrWg6SVkoKw5iQdccvs9VJtnWw03tvR_C_tAOrjwnnew2pZTOgbjilHRNMUqnKsm1AouJgGoNSIWCdtD6dtLYwnEndLdbaTmHWlAslOFUHluAPJzht5ceMIeqdS_tKo-pCUCEVLYX4S_WQOrBT56IHM9pg9EKoqqpLRVWirv5DpdfiaI2bsLMpf1bw8awgMRF_xh7mEPTq2-acZSfWpCsGj93zaIzqR__p5D9dMH30n370H_8DoPPNZA</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Siméon, Alexandre</creator><creator>Waquet, Fabien</creator><creator>Péré, Jean-Christophe</creator><creator>Ducos, Fabrice</creator><creator>Thieuleux, François</creator><creator>Peers, Fanny</creator><creator>Turquety, Solène</creator><creator>Chiapello, Isabelle</creator><general>Copernicus GmbH</general><general>European Geosciences Union</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2796-8738</orcidid><orcidid>https://orcid.org/0000-0003-2683-8445</orcidid><orcidid>https://orcid.org/0000-0002-0398-547X</orcidid></search><sort><creationdate>20211206</creationdate><title>Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region</title><author>Siméon, Alexandre ; Waquet, Fabien ; Péré, Jean-Christophe ; Ducos, Fabrice ; Thieuleux, François ; Peers, Fanny ; Turquety, Solène ; Chiapello, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Aerosol absorption</topic><topic>Aerosol effects</topic><topic>Aerosol optical depth</topic><topic>Aerosol optical properties</topic><topic>Aerosol properties</topic><topic>Aerosols</topic><topic>Albedo</topic><topic>Analysis</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Black carbon</topic><topic>Burning</topic><topic>Carbon</topic><topic>Chemical composition</topic><topic>Clear sky</topic><topic>Climate</topic><topic>Climate models</topic><topic>Clouds</topic><topic>Coastal zone</topic><topic>Combustion</topic><topic>Constraints</topic><topic>Emission inventories</topic><topic>Emissions</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Numerical analysis</topic><topic>Numerical simulations</topic><topic>Numerical weather forecasting</topic><topic>Optical analysis</topic><topic>Optical properties</topic><topic>Optical thickness</topic><topic>Plumes</topic><topic>Polders</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sciences of the Universe</topic><topic>Simulation</topic><topic>Specificity</topic><topic>Ultraviolet radiation</topic><topic>Wavelength</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siméon, Alexandre</creatorcontrib><creatorcontrib>Waquet, Fabien</creatorcontrib><creatorcontrib>Péré, Jean-Christophe</creatorcontrib><creatorcontrib>Ducos, Fabrice</creatorcontrib><creatorcontrib>Thieuleux, François</creatorcontrib><creatorcontrib>Peers, Fanny</creatorcontrib><creatorcontrib>Turquety, Solène</creatorcontrib><creatorcontrib>Chiapello, Isabelle</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siméon, Alexandre</au><au>Waquet, Fabien</au><au>Péré, Jean-Christophe</au><au>Ducos, Fabrice</au><au>Thieuleux, François</au><au>Peers, Fanny</au><au>Turquety, Solène</au><au>Chiapello, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2021-12-06</date><risdate>2021</risdate><volume>21</volume><issue>23</issue><spage>17775</spage><epage>17805</epage><pages>17775-17805</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Aerosol absorption is a key property to assess the
radiative impacts of aerosols on climate at both global and regional scales.
The aerosol physico-chemical and optical properties remain not sufficiently
constrained in climate models, with difficulties to properly represent both
the aerosol load and their absorption properties in clear and cloudy scenes,
especially for absorbing biomass burning aerosols (BBA). In this study we
focus on biomass burning (BB) particle plumes transported above clouds over
the southeast Atlantic (SEA) region off the southwest coast of Africa, in
order to improve the representation of their physico-chemical and absorption
properties. The methodology is based on aerosol regional numerical
simulations from the WRF-Chem coupled meteorology–chemistry model combined
with a detailed inventory of BB emissions and various sets of innovative
aerosol remote sensing observations, both in clear and cloudy skies from the
POLDER-3/PARASOL space sensor. Current literature indicates that some
organic aerosol compounds (OC), called brown carbon (BrOC), primarily
emitted by biomass combustion absorb the ultraviolet-blue radiation more
efficiently than pure black carbon (BC). We exploit this specificity by
comparing the spectral dependence of the aerosol single scattering albedo
(SSA) derived from the POLDER-3 satellite observations in the 443–1020 nm
wavelength range with the SSA simulated for different proportions of BC, OC
and BrOC at the source level, considering the homogeneous internal mixing
state of particles. These numerical simulation experiments are based on two
main constraints: maintaining a realistic aerosol optical depth both in
clear and above cloudy scenes and a realistic BC/OC mass ratio. Modelling
experiments are presented and discussed to link the chemical composition
with the absorption properties of BBA and to provide estimates of the relative proportions of black, organic and brown carbon in the African BBA
plumes transported over the SEA region for July 2008. The absorbing fraction of organic aerosols in the BBA plumes, i.e. BrOC, is estimated at 2 % to 3 %. The simulated mean SSA are 0.81 (565 nm) and 0.84 (550 nm) in clear and above cloudy scenes respectively, in good agreement with those retrieved by POLDER-3 (0.85±0.05 at 565 nm in clear sky and at 550 nm above clouds) for the studied period.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-21-17775-2021</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2796-8738</orcidid><orcidid>https://orcid.org/0000-0003-2683-8445</orcidid><orcidid>https://orcid.org/0000-0002-0398-547X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2021-12, Vol.21 (23), p.17775-17805 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b300f161707844dba7e83acbce78eae9 |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Absorption Aerosol absorption Aerosol effects Aerosol optical depth Aerosol optical properties Aerosol properties Aerosols Albedo Analysis Biomass Biomass burning Black carbon Burning Carbon Chemical composition Clear sky Climate Climate models Clouds Coastal zone Combustion Constraints Emission inventories Emissions Mathematical models Meteorology Numerical analysis Numerical simulations Numerical weather forecasting Optical analysis Optical properties Optical thickness Plumes Polders Radiation Remote sensing Satellite observation Satellites Sciences of the Universe Simulation Specificity Ultraviolet radiation Wavelength Weather |
title | Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20POLDER-3%20satellite%20observations%20and%20WRF-Chem%20numerical%20simulations%20to%20derive%20biomass%20burning%20aerosol%20properties%20over%20the%20southeast%20Atlantic%20region&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Sim%C3%A9on,%20Alexandre&rft.date=2021-12-06&rft.volume=21&rft.issue=23&rft.spage=17775&rft.epage=17805&rft.pages=17775-17805&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-21-17775-2021&rft_dat=%3Cgale_doaj_%3EA685594808%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-a146d166130fcf0e8bda8523836917255e3b08dcb1408ffd3a705876c11679f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2606780466&rft_id=info:pmid/&rft_galeid=A685594808&rfr_iscdi=true |