Loading…
Implementing Circular Economy in the Production of Biogas from Plant and Animal Waste: Opportunities in Greenhouse Heating
Several years have passed since the linear economy model proved unsustainable, leading to the transition toward the circular economy (CE) model. Significant amounts of agricultural residues and waste from livestock farming units remain unutilized in fields. The anaerobic digestion (AD) method addres...
Saved in:
Published in: | AgriEngineering 2024-12, Vol.6 (4), p.4675-4687 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-ccbee502a44c252f85d186cbe8b8db724862ee06f9037cffd94f692b40f291dd3 |
container_end_page | 4687 |
container_issue | 4 |
container_start_page | 4675 |
container_title | AgriEngineering |
container_volume | 6 |
creator | Argyropoulos, Christos Thomopoulos, Vasileios Petrakis, Theodoros Kavga, Angeliki |
description | Several years have passed since the linear economy model proved unsustainable, leading to the transition toward the circular economy (CE) model. Significant amounts of agricultural residues and waste from livestock farming units remain unutilized in fields. The anaerobic digestion (AD) method addresses this issue by generating energy in the form of thermal (TE) and electrical energy (EE). This article examines greenhouse heating using thermal energy from a biogas plant. For this purpose, a thermal load model is developed and applied in two regions, northern (Florina) and central Greece (Trikala), to assess the greenhouse’s energy requirements in areas with differing characteristics, especially during the winter months. Additionally, the economic benefits of a biogas plant from selling electricity to the grid are analyzed. Thermal energy constitutes 59.7% of the system’s total energy output. On average, the generated electrical energy amounts to 518 MW h per month, while thermal energy reaches 770 MW h per month. The biogas plant’s daily electricity consumption ranges from 1564 kW h to 2173 kW h, depending on its needs. Ambient temperatures vary between 0 °C and 37 °C, significantly influencing the greenhouse heating system’s efficiency. The biogas plant also demonstrates financial profitability, earning 504,549 € annually from the sale of surplus electricity. Furthermore, the article explores greenhouse crops in the broader Thessaly region, where tomato cultivation seems to be dominant. Greenhouse heating requirements depend on crop type, location, weather conditions, sunlight exposure, and heat loss based on covering materials. Meanwhile, the thermal energy output that can heat a given greenhouse area is directly proportional to the biogas plant’s capacity. |
doi_str_mv | 10.3390/agriengineering6040267 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b32e66dcf5c54b3e8854bac76c34e468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b32e66dcf5c54b3e8854bac76c34e468</doaj_id><sourcerecordid>3149494628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-ccbee502a44c252f85d186cbe8b8db724862ee06f9037cffd94f692b40f291dd3</originalsourceid><addsrcrecordid>eNptkcFKxDAQhosouKivIAHPq2mSpq03XXR3YWE9KB5DmkxqljapSXrQp7friniQOfwzPzPfDEyWXeb4mtIa38g2WHCtdQDBupZjhgkvj7IZ4YTNy6k6_pOfZhcx7jDGpMCsqOtZ9rnuhw56cGmaRgsb1NjJgB6Ud77_QNah9AboKXg9qmS9Q96ge-tbGZEJvkdPnXQJSafRnbO97NCrjAlu0XYYfEijs8lC3GOWAcC9-TECWoHcbzvPTozsIlz86Fn28vjwvFjNN9vlenG3mSua0zRXqgEoMJGMKVIQUxU6r_hkVk2lm5KwihMAzE2NaamM0TUzvCYNw4bUudb0LFsfuNrLnRjCdGb4EF5a8W340AoZklUdiIYS4FwrU6iCNRSqahKpSq4oA8ariXV1YA3Bv48Qk9j5MbjpfEFzVk_Byb6LH7pU8DEGML9bcyz2bxP_v41-AWRZkZI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149494628</pqid></control><display><type>article</type><title>Implementing Circular Economy in the Production of Biogas from Plant and Animal Waste: Opportunities in Greenhouse Heating</title><source>Publicly Available Content (ProQuest)</source><creator>Argyropoulos, Christos ; Thomopoulos, Vasileios ; Petrakis, Theodoros ; Kavga, Angeliki</creator><creatorcontrib>Argyropoulos, Christos ; Thomopoulos, Vasileios ; Petrakis, Theodoros ; Kavga, Angeliki</creatorcontrib><description>Several years have passed since the linear economy model proved unsustainable, leading to the transition toward the circular economy (CE) model. Significant amounts of agricultural residues and waste from livestock farming units remain unutilized in fields. The anaerobic digestion (AD) method addresses this issue by generating energy in the form of thermal (TE) and electrical energy (EE). This article examines greenhouse heating using thermal energy from a biogas plant. For this purpose, a thermal load model is developed and applied in two regions, northern (Florina) and central Greece (Trikala), to assess the greenhouse’s energy requirements in areas with differing characteristics, especially during the winter months. Additionally, the economic benefits of a biogas plant from selling electricity to the grid are analyzed. Thermal energy constitutes 59.7% of the system’s total energy output. On average, the generated electrical energy amounts to 518 MW h per month, while thermal energy reaches 770 MW h per month. The biogas plant’s daily electricity consumption ranges from 1564 kW h to 2173 kW h, depending on its needs. Ambient temperatures vary between 0 °C and 37 °C, significantly influencing the greenhouse heating system’s efficiency. The biogas plant also demonstrates financial profitability, earning 504,549 € annually from the sale of surplus electricity. Furthermore, the article explores greenhouse crops in the broader Thessaly region, where tomato cultivation seems to be dominant. Greenhouse heating requirements depend on crop type, location, weather conditions, sunlight exposure, and heat loss based on covering materials. Meanwhile, the thermal energy output that can heat a given greenhouse area is directly proportional to the biogas plant’s capacity.</description><identifier>ISSN: 2624-7402</identifier><identifier>EISSN: 2624-7402</identifier><identifier>DOI: 10.3390/agriengineering6040267</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural economics ; Agricultural wastes ; Alternative energy sources ; Ambient temperature ; Anaerobic digestion ; animal manure ; Animal wastes ; Biogas ; Carbon footprint ; Circular economy ; Climate change ; Common Agricultural Policy ; Community ; corn silage ; Crop residues ; Cultivation ; Economic growth ; Economics ; Electricity ; Electricity consumption ; Energy consumption ; Energy output ; Energy requirements ; Farm buildings ; Flowers & plants ; Fossil fuels ; Fruit cultivation ; GDP ; greenhouse ; Greenhouse gases ; Greenhouses ; Gross Domestic Product ; Heat loss ; Heating ; Livestock ; Livestock farming ; Plant layout ; Raw materials ; Renewable resources ; Sustainable development ; Thermal analysis ; Thermal energy ; Tomatoes ; Weather</subject><ispartof>AgriEngineering, 2024-12, Vol.6 (4), p.4675-4687</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c313t-ccbee502a44c252f85d186cbe8b8db724862ee06f9037cffd94f692b40f291dd3</cites><orcidid>0000-0002-2914-3713 ; 0009-0005-6722-3510 ; 0009-0008-7120-2669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149494628/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149494628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Argyropoulos, Christos</creatorcontrib><creatorcontrib>Thomopoulos, Vasileios</creatorcontrib><creatorcontrib>Petrakis, Theodoros</creatorcontrib><creatorcontrib>Kavga, Angeliki</creatorcontrib><title>Implementing Circular Economy in the Production of Biogas from Plant and Animal Waste: Opportunities in Greenhouse Heating</title><title>AgriEngineering</title><description>Several years have passed since the linear economy model proved unsustainable, leading to the transition toward the circular economy (CE) model. Significant amounts of agricultural residues and waste from livestock farming units remain unutilized in fields. The anaerobic digestion (AD) method addresses this issue by generating energy in the form of thermal (TE) and electrical energy (EE). This article examines greenhouse heating using thermal energy from a biogas plant. For this purpose, a thermal load model is developed and applied in two regions, northern (Florina) and central Greece (Trikala), to assess the greenhouse’s energy requirements in areas with differing characteristics, especially during the winter months. Additionally, the economic benefits of a biogas plant from selling electricity to the grid are analyzed. Thermal energy constitutes 59.7% of the system’s total energy output. On average, the generated electrical energy amounts to 518 MW h per month, while thermal energy reaches 770 MW h per month. The biogas plant’s daily electricity consumption ranges from 1564 kW h to 2173 kW h, depending on its needs. Ambient temperatures vary between 0 °C and 37 °C, significantly influencing the greenhouse heating system’s efficiency. The biogas plant also demonstrates financial profitability, earning 504,549 € annually from the sale of surplus electricity. Furthermore, the article explores greenhouse crops in the broader Thessaly region, where tomato cultivation seems to be dominant. Greenhouse heating requirements depend on crop type, location, weather conditions, sunlight exposure, and heat loss based on covering materials. Meanwhile, the thermal energy output that can heat a given greenhouse area is directly proportional to the biogas plant’s capacity.</description><subject>Agricultural economics</subject><subject>Agricultural wastes</subject><subject>Alternative energy sources</subject><subject>Ambient temperature</subject><subject>Anaerobic digestion</subject><subject>animal manure</subject><subject>Animal wastes</subject><subject>Biogas</subject><subject>Carbon footprint</subject><subject>Circular economy</subject><subject>Climate change</subject><subject>Common Agricultural Policy</subject><subject>Community</subject><subject>corn silage</subject><subject>Crop residues</subject><subject>Cultivation</subject><subject>Economic growth</subject><subject>Economics</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Energy consumption</subject><subject>Energy output</subject><subject>Energy requirements</subject><subject>Farm buildings</subject><subject>Flowers & plants</subject><subject>Fossil fuels</subject><subject>Fruit cultivation</subject><subject>GDP</subject><subject>greenhouse</subject><subject>Greenhouse gases</subject><subject>Greenhouses</subject><subject>Gross Domestic Product</subject><subject>Heat loss</subject><subject>Heating</subject><subject>Livestock</subject><subject>Livestock farming</subject><subject>Plant layout</subject><subject>Raw materials</subject><subject>Renewable resources</subject><subject>Sustainable development</subject><subject>Thermal analysis</subject><subject>Thermal energy</subject><subject>Tomatoes</subject><subject>Weather</subject><issn>2624-7402</issn><issn>2624-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkcFKxDAQhosouKivIAHPq2mSpq03XXR3YWE9KB5DmkxqljapSXrQp7friniQOfwzPzPfDEyWXeb4mtIa38g2WHCtdQDBupZjhgkvj7IZ4YTNy6k6_pOfZhcx7jDGpMCsqOtZ9rnuhw56cGmaRgsb1NjJgB6Ud77_QNah9AboKXg9qmS9Q96ge-tbGZEJvkdPnXQJSafRnbO97NCrjAlu0XYYfEijs8lC3GOWAcC9-TECWoHcbzvPTozsIlz86Fn28vjwvFjNN9vlenG3mSua0zRXqgEoMJGMKVIQUxU6r_hkVk2lm5KwihMAzE2NaamM0TUzvCYNw4bUudb0LFsfuNrLnRjCdGb4EF5a8W340AoZklUdiIYS4FwrU6iCNRSqahKpSq4oA8ariXV1YA3Bv48Qk9j5MbjpfEFzVk_Byb6LH7pU8DEGML9bcyz2bxP_v41-AWRZkZI</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Argyropoulos, Christos</creator><creator>Thomopoulos, Vasileios</creator><creator>Petrakis, Theodoros</creator><creator>Kavga, Angeliki</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2914-3713</orcidid><orcidid>https://orcid.org/0009-0005-6722-3510</orcidid><orcidid>https://orcid.org/0009-0008-7120-2669</orcidid></search><sort><creationdate>20241201</creationdate><title>Implementing Circular Economy in the Production of Biogas from Plant and Animal Waste: Opportunities in Greenhouse Heating</title><author>Argyropoulos, Christos ; Thomopoulos, Vasileios ; Petrakis, Theodoros ; Kavga, Angeliki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-ccbee502a44c252f85d186cbe8b8db724862ee06f9037cffd94f692b40f291dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural economics</topic><topic>Agricultural wastes</topic><topic>Alternative energy sources</topic><topic>Ambient temperature</topic><topic>Anaerobic digestion</topic><topic>animal manure</topic><topic>Animal wastes</topic><topic>Biogas</topic><topic>Carbon footprint</topic><topic>Circular economy</topic><topic>Climate change</topic><topic>Common Agricultural Policy</topic><topic>Community</topic><topic>corn silage</topic><topic>Crop residues</topic><topic>Cultivation</topic><topic>Economic growth</topic><topic>Economics</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Energy consumption</topic><topic>Energy output</topic><topic>Energy requirements</topic><topic>Farm buildings</topic><topic>Flowers & plants</topic><topic>Fossil fuels</topic><topic>Fruit cultivation</topic><topic>GDP</topic><topic>greenhouse</topic><topic>Greenhouse gases</topic><topic>Greenhouses</topic><topic>Gross Domestic Product</topic><topic>Heat loss</topic><topic>Heating</topic><topic>Livestock</topic><topic>Livestock farming</topic><topic>Plant layout</topic><topic>Raw materials</topic><topic>Renewable resources</topic><topic>Sustainable development</topic><topic>Thermal analysis</topic><topic>Thermal energy</topic><topic>Tomatoes</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Argyropoulos, Christos</creatorcontrib><creatorcontrib>Thomopoulos, Vasileios</creatorcontrib><creatorcontrib>Petrakis, Theodoros</creatorcontrib><creatorcontrib>Kavga, Angeliki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AgriEngineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argyropoulos, Christos</au><au>Thomopoulos, Vasileios</au><au>Petrakis, Theodoros</au><au>Kavga, Angeliki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementing Circular Economy in the Production of Biogas from Plant and Animal Waste: Opportunities in Greenhouse Heating</atitle><jtitle>AgriEngineering</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>6</volume><issue>4</issue><spage>4675</spage><epage>4687</epage><pages>4675-4687</pages><issn>2624-7402</issn><eissn>2624-7402</eissn><abstract>Several years have passed since the linear economy model proved unsustainable, leading to the transition toward the circular economy (CE) model. Significant amounts of agricultural residues and waste from livestock farming units remain unutilized in fields. The anaerobic digestion (AD) method addresses this issue by generating energy in the form of thermal (TE) and electrical energy (EE). This article examines greenhouse heating using thermal energy from a biogas plant. For this purpose, a thermal load model is developed and applied in two regions, northern (Florina) and central Greece (Trikala), to assess the greenhouse’s energy requirements in areas with differing characteristics, especially during the winter months. Additionally, the economic benefits of a biogas plant from selling electricity to the grid are analyzed. Thermal energy constitutes 59.7% of the system’s total energy output. On average, the generated electrical energy amounts to 518 MW h per month, while thermal energy reaches 770 MW h per month. The biogas plant’s daily electricity consumption ranges from 1564 kW h to 2173 kW h, depending on its needs. Ambient temperatures vary between 0 °C and 37 °C, significantly influencing the greenhouse heating system’s efficiency. The biogas plant also demonstrates financial profitability, earning 504,549 € annually from the sale of surplus electricity. Furthermore, the article explores greenhouse crops in the broader Thessaly region, where tomato cultivation seems to be dominant. Greenhouse heating requirements depend on crop type, location, weather conditions, sunlight exposure, and heat loss based on covering materials. Meanwhile, the thermal energy output that can heat a given greenhouse area is directly proportional to the biogas plant’s capacity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriengineering6040267</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2914-3713</orcidid><orcidid>https://orcid.org/0009-0005-6722-3510</orcidid><orcidid>https://orcid.org/0009-0008-7120-2669</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2624-7402 |
ispartof | AgriEngineering, 2024-12, Vol.6 (4), p.4675-4687 |
issn | 2624-7402 2624-7402 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b32e66dcf5c54b3e8854bac76c34e468 |
source | Publicly Available Content (ProQuest) |
subjects | Agricultural economics Agricultural wastes Alternative energy sources Ambient temperature Anaerobic digestion animal manure Animal wastes Biogas Carbon footprint Circular economy Climate change Common Agricultural Policy Community corn silage Crop residues Cultivation Economic growth Economics Electricity Electricity consumption Energy consumption Energy output Energy requirements Farm buildings Flowers & plants Fossil fuels Fruit cultivation GDP greenhouse Greenhouse gases Greenhouses Gross Domestic Product Heat loss Heating Livestock Livestock farming Plant layout Raw materials Renewable resources Sustainable development Thermal analysis Thermal energy Tomatoes Weather |
title | Implementing Circular Economy in the Production of Biogas from Plant and Animal Waste: Opportunities in Greenhouse Heating |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementing%20Circular%20Economy%20in%20the%20Production%20of%20Biogas%20from%20Plant%20and%20Animal%20Waste:%20Opportunities%20in%20Greenhouse%20Heating&rft.jtitle=AgriEngineering&rft.au=Argyropoulos,%20Christos&rft.date=2024-12-01&rft.volume=6&rft.issue=4&rft.spage=4675&rft.epage=4687&rft.pages=4675-4687&rft.issn=2624-7402&rft.eissn=2624-7402&rft_id=info:doi/10.3390/agriengineering6040267&rft_dat=%3Cproquest_doaj_%3E3149494628%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-ccbee502a44c252f85d186cbe8b8db724862ee06f9037cffd94f692b40f291dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149494628&rft_id=info:pmid/&rfr_iscdi=true |