Loading…
Detection and Diagnosis of Paralysis Agitans
Humans' daily behavior can reflect the main physiological characteristics of neurological diseases. Human gait is a complex behavior produced by the coordination of multiple physiological systems, such as the nervous system and the muscular system. It can reflect the physiological state of huma...
Saved in:
Published in: | IEEE access 2018, Vol.6, p.73023-73029 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3 |
container_end_page | 73029 |
container_issue | |
container_start_page | 73023 |
container_title | IEEE access |
container_volume | 6 |
creator | Fan, Xiao Sun, Wanrong Ren, Aifeng Fan, Dou Zhao, Nan Haider, Daniyal Yang, Xiaodong Abbasi, Qammer H. |
description | Humans' daily behavior can reflect the main physiological characteristics of neurological diseases. Human gait is a complex behavior produced by the coordination of multiple physiological systems, such as the nervous system and the muscular system. It can reflect the physiological state of human health, and its abnormality is an important basis for diagnosing some nervous system diseases. However, many early gait anomalies have not been effectively discovered because of medical costs and people's living customs. This paper proposes an effective, economical, and accurate non-contact cognitive diagnosis system to help early detection and diagnosis of paralysis agitans under daily life conditions. The proposed system extract data from wireless state information obtained from antenna-based data gathering module. Further, we implement data processing and gait classification systems to detect abnormal gait based on the acquired wireless data. In the experiment, the proposed system can detect the state of human gait and carries high classification accuracy up to 96.7%. The experimental results demonstrate that the proposed technique is feasible and cost-effective for healthcare applications. |
doi_str_mv | 10.1109/ACCESS.2018.2882134 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b3355fbe8cb24034b01effa00c9fa8a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8540385</ieee_id><doaj_id>oai_doaj_org_article_b3355fbe8cb24034b01effa00c9fa8a0</doaj_id><sourcerecordid>2455929795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpoWL9BV4Weq128uUmR1ltKwgt2J5DNptIxG5ssh78941dkc5lPpj3meFFaIxhijHI53lVLTebKQEspkQIgim7QQOCZ3JCOZ3d_qvv0SilHeQQecTLAXpa2M6azoe20G1TLLzetiH5VARXfOio96dzM9_6TrfpAd05vU92dMlD9PWy_KzeJuv311U1X08MA9FNTCmpkK5uLAdKca6YcA1QU4Kpa9NQbhoHUmNqhdHGAhhSCyYaICDZzNIhWvXcJuidOkT_reNJBe3V3yDErdKx82ZvVU0p567OoJowoKwGbJ3TGSmdFhoy67FnHWL4OdrUqV04xja_rwjjXBJZSp63aL9lYkgpWne9ikGdXVa9y-rssrq4nFXjXuWttVeF4PkRwekvFK13gQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455929795</pqid></control><display><type>article</type><title>Detection and Diagnosis of Paralysis Agitans</title><source>IEEE Xplore Open Access Journals</source><creator>Fan, Xiao ; Sun, Wanrong ; Ren, Aifeng ; Fan, Dou ; Zhao, Nan ; Haider, Daniyal ; Yang, Xiaodong ; Abbasi, Qammer H.</creator><creatorcontrib>Fan, Xiao ; Sun, Wanrong ; Ren, Aifeng ; Fan, Dou ; Zhao, Nan ; Haider, Daniyal ; Yang, Xiaodong ; Abbasi, Qammer H.</creatorcontrib><description>Humans' daily behavior can reflect the main physiological characteristics of neurological diseases. Human gait is a complex behavior produced by the coordination of multiple physiological systems, such as the nervous system and the muscular system. It can reflect the physiological state of human health, and its abnormality is an important basis for diagnosing some nervous system diseases. However, many early gait anomalies have not been effectively discovered because of medical costs and people's living customs. This paper proposes an effective, economical, and accurate non-contact cognitive diagnosis system to help early detection and diagnosis of paralysis agitans under daily life conditions. The proposed system extract data from wireless state information obtained from antenna-based data gathering module. Further, we implement data processing and gait classification systems to detect abnormal gait based on the acquired wireless data. In the experiment, the proposed system can detect the state of human gait and carries high classification accuracy up to 96.7%. The experimental results demonstrate that the proposed technique is feasible and cost-effective for healthcare applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2882134</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>abnormal gait ; Anomalies ; automatic detection system ; Classification ; Data acquisition ; Data mining ; Data processing ; Diagnosis ; Feature extraction ; Gait ; Nervous system ; Neurologic disease ; Neurological diseases ; Paralysis ; paralysis agitans ; Physiology ; State (computer science) ; Wireless communication ; Wireless sensor networks ; wireless state information</subject><ispartof>IEEE access, 2018, Vol.6, p.73023-73029</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3</citedby><cites>FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3</cites><orcidid>0000-0002-4701-1204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8540385$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Fan, Xiao</creatorcontrib><creatorcontrib>Sun, Wanrong</creatorcontrib><creatorcontrib>Ren, Aifeng</creatorcontrib><creatorcontrib>Fan, Dou</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Haider, Daniyal</creatorcontrib><creatorcontrib>Yang, Xiaodong</creatorcontrib><creatorcontrib>Abbasi, Qammer H.</creatorcontrib><title>Detection and Diagnosis of Paralysis Agitans</title><title>IEEE access</title><addtitle>Access</addtitle><description>Humans' daily behavior can reflect the main physiological characteristics of neurological diseases. Human gait is a complex behavior produced by the coordination of multiple physiological systems, such as the nervous system and the muscular system. It can reflect the physiological state of human health, and its abnormality is an important basis for diagnosing some nervous system diseases. However, many early gait anomalies have not been effectively discovered because of medical costs and people's living customs. This paper proposes an effective, economical, and accurate non-contact cognitive diagnosis system to help early detection and diagnosis of paralysis agitans under daily life conditions. The proposed system extract data from wireless state information obtained from antenna-based data gathering module. Further, we implement data processing and gait classification systems to detect abnormal gait based on the acquired wireless data. In the experiment, the proposed system can detect the state of human gait and carries high classification accuracy up to 96.7%. The experimental results demonstrate that the proposed technique is feasible and cost-effective for healthcare applications.</description><subject>abnormal gait</subject><subject>Anomalies</subject><subject>automatic detection system</subject><subject>Classification</subject><subject>Data acquisition</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Gait</subject><subject>Nervous system</subject><subject>Neurologic disease</subject><subject>Neurological diseases</subject><subject>Paralysis</subject><subject>paralysis agitans</subject><subject>Physiology</subject><subject>State (computer science)</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><subject>wireless state information</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1rAjEQhkNpoWL9BV4Weq128uUmR1ltKwgt2J5DNptIxG5ssh78941dkc5lPpj3meFFaIxhijHI53lVLTebKQEspkQIgim7QQOCZ3JCOZ3d_qvv0SilHeQQecTLAXpa2M6azoe20G1TLLzetiH5VARXfOio96dzM9_6TrfpAd05vU92dMlD9PWy_KzeJuv311U1X08MA9FNTCmpkK5uLAdKca6YcA1QU4Kpa9NQbhoHUmNqhdHGAhhSCyYaICDZzNIhWvXcJuidOkT_reNJBe3V3yDErdKx82ZvVU0p567OoJowoKwGbJ3TGSmdFhoy67FnHWL4OdrUqV04xja_rwjjXBJZSp63aL9lYkgpWne9ikGdXVa9y-rssrq4nFXjXuWttVeF4PkRwekvFK13gQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Fan, Xiao</creator><creator>Sun, Wanrong</creator><creator>Ren, Aifeng</creator><creator>Fan, Dou</creator><creator>Zhao, Nan</creator><creator>Haider, Daniyal</creator><creator>Yang, Xiaodong</creator><creator>Abbasi, Qammer H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4701-1204</orcidid></search><sort><creationdate>2018</creationdate><title>Detection and Diagnosis of Paralysis Agitans</title><author>Fan, Xiao ; Sun, Wanrong ; Ren, Aifeng ; Fan, Dou ; Zhao, Nan ; Haider, Daniyal ; Yang, Xiaodong ; Abbasi, Qammer H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>abnormal gait</topic><topic>Anomalies</topic><topic>automatic detection system</topic><topic>Classification</topic><topic>Data acquisition</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Gait</topic><topic>Nervous system</topic><topic>Neurologic disease</topic><topic>Neurological diseases</topic><topic>Paralysis</topic><topic>paralysis agitans</topic><topic>Physiology</topic><topic>State (computer science)</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><topic>wireless state information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiao</creatorcontrib><creatorcontrib>Sun, Wanrong</creatorcontrib><creatorcontrib>Ren, Aifeng</creatorcontrib><creatorcontrib>Fan, Dou</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Haider, Daniyal</creatorcontrib><creatorcontrib>Yang, Xiaodong</creatorcontrib><creatorcontrib>Abbasi, Qammer H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiao</au><au>Sun, Wanrong</au><au>Ren, Aifeng</au><au>Fan, Dou</au><au>Zhao, Nan</au><au>Haider, Daniyal</au><au>Yang, Xiaodong</au><au>Abbasi, Qammer H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Diagnosis of Paralysis Agitans</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>73023</spage><epage>73029</epage><pages>73023-73029</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Humans' daily behavior can reflect the main physiological characteristics of neurological diseases. Human gait is a complex behavior produced by the coordination of multiple physiological systems, such as the nervous system and the muscular system. It can reflect the physiological state of human health, and its abnormality is an important basis for diagnosing some nervous system diseases. However, many early gait anomalies have not been effectively discovered because of medical costs and people's living customs. This paper proposes an effective, economical, and accurate non-contact cognitive diagnosis system to help early detection and diagnosis of paralysis agitans under daily life conditions. The proposed system extract data from wireless state information obtained from antenna-based data gathering module. Further, we implement data processing and gait classification systems to detect abnormal gait based on the acquired wireless data. In the experiment, the proposed system can detect the state of human gait and carries high classification accuracy up to 96.7%. The experimental results demonstrate that the proposed technique is feasible and cost-effective for healthcare applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2882134</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4701-1204</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018, Vol.6, p.73023-73029 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b3355fbe8cb24034b01effa00c9fa8a0 |
source | IEEE Xplore Open Access Journals |
subjects | abnormal gait Anomalies automatic detection system Classification Data acquisition Data mining Data processing Diagnosis Feature extraction Gait Nervous system Neurologic disease Neurological diseases Paralysis paralysis agitans Physiology State (computer science) Wireless communication Wireless sensor networks wireless state information |
title | Detection and Diagnosis of Paralysis Agitans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Diagnosis%20of%20Paralysis%20Agitans&rft.jtitle=IEEE%20access&rft.au=Fan,%20Xiao&rft.date=2018&rft.volume=6&rft.spage=73023&rft.epage=73029&rft.pages=73023-73029&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2882134&rft_dat=%3Cproquest_doaj_%3E2455929795%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455929795&rft_id=info:pmid/&rft_ieee_id=8540385&rfr_iscdi=true |