Loading…

Detection and Diagnosis of Paralysis Agitans

Humans' daily behavior can reflect the main physiological characteristics of neurological diseases. Human gait is a complex behavior produced by the coordination of multiple physiological systems, such as the nervous system and the muscular system. It can reflect the physiological state of huma...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018, Vol.6, p.73023-73029
Main Authors: Fan, Xiao, Sun, Wanrong, Ren, Aifeng, Fan, Dou, Zhao, Nan, Haider, Daniyal, Yang, Xiaodong, Abbasi, Qammer H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3
cites cdi_FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3
container_end_page 73029
container_issue
container_start_page 73023
container_title IEEE access
container_volume 6
creator Fan, Xiao
Sun, Wanrong
Ren, Aifeng
Fan, Dou
Zhao, Nan
Haider, Daniyal
Yang, Xiaodong
Abbasi, Qammer H.
description Humans' daily behavior can reflect the main physiological characteristics of neurological diseases. Human gait is a complex behavior produced by the coordination of multiple physiological systems, such as the nervous system and the muscular system. It can reflect the physiological state of human health, and its abnormality is an important basis for diagnosing some nervous system diseases. However, many early gait anomalies have not been effectively discovered because of medical costs and people's living customs. This paper proposes an effective, economical, and accurate non-contact cognitive diagnosis system to help early detection and diagnosis of paralysis agitans under daily life conditions. The proposed system extract data from wireless state information obtained from antenna-based data gathering module. Further, we implement data processing and gait classification systems to detect abnormal gait based on the acquired wireless data. In the experiment, the proposed system can detect the state of human gait and carries high classification accuracy up to 96.7%. The experimental results demonstrate that the proposed technique is feasible and cost-effective for healthcare applications.
doi_str_mv 10.1109/ACCESS.2018.2882134
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b3355fbe8cb24034b01effa00c9fa8a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8540385</ieee_id><doaj_id>oai_doaj_org_article_b3355fbe8cb24034b01effa00c9fa8a0</doaj_id><sourcerecordid>2455929795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpoWL9BV4Weq128uUmR1ltKwgt2J5DNptIxG5ssh78941dkc5lPpj3meFFaIxhijHI53lVLTebKQEspkQIgim7QQOCZ3JCOZ3d_qvv0SilHeQQecTLAXpa2M6azoe20G1TLLzetiH5VARXfOio96dzM9_6TrfpAd05vU92dMlD9PWy_KzeJuv311U1X08MA9FNTCmpkK5uLAdKca6YcA1QU4Kpa9NQbhoHUmNqhdHGAhhSCyYaICDZzNIhWvXcJuidOkT_reNJBe3V3yDErdKx82ZvVU0p567OoJowoKwGbJ3TGSmdFhoy67FnHWL4OdrUqV04xja_rwjjXBJZSp63aL9lYkgpWne9ikGdXVa9y-rssrq4nFXjXuWttVeF4PkRwekvFK13gQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455929795</pqid></control><display><type>article</type><title>Detection and Diagnosis of Paralysis Agitans</title><source>IEEE Xplore Open Access Journals</source><creator>Fan, Xiao ; Sun, Wanrong ; Ren, Aifeng ; Fan, Dou ; Zhao, Nan ; Haider, Daniyal ; Yang, Xiaodong ; Abbasi, Qammer H.</creator><creatorcontrib>Fan, Xiao ; Sun, Wanrong ; Ren, Aifeng ; Fan, Dou ; Zhao, Nan ; Haider, Daniyal ; Yang, Xiaodong ; Abbasi, Qammer H.</creatorcontrib><description>Humans' daily behavior can reflect the main physiological characteristics of neurological diseases. Human gait is a complex behavior produced by the coordination of multiple physiological systems, such as the nervous system and the muscular system. It can reflect the physiological state of human health, and its abnormality is an important basis for diagnosing some nervous system diseases. However, many early gait anomalies have not been effectively discovered because of medical costs and people's living customs. This paper proposes an effective, economical, and accurate non-contact cognitive diagnosis system to help early detection and diagnosis of paralysis agitans under daily life conditions. The proposed system extract data from wireless state information obtained from antenna-based data gathering module. Further, we implement data processing and gait classification systems to detect abnormal gait based on the acquired wireless data. In the experiment, the proposed system can detect the state of human gait and carries high classification accuracy up to 96.7%. The experimental results demonstrate that the proposed technique is feasible and cost-effective for healthcare applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2882134</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>abnormal gait ; Anomalies ; automatic detection system ; Classification ; Data acquisition ; Data mining ; Data processing ; Diagnosis ; Feature extraction ; Gait ; Nervous system ; Neurologic disease ; Neurological diseases ; Paralysis ; paralysis agitans ; Physiology ; State (computer science) ; Wireless communication ; Wireless sensor networks ; wireless state information</subject><ispartof>IEEE access, 2018, Vol.6, p.73023-73029</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3</citedby><cites>FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3</cites><orcidid>0000-0002-4701-1204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8540385$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Fan, Xiao</creatorcontrib><creatorcontrib>Sun, Wanrong</creatorcontrib><creatorcontrib>Ren, Aifeng</creatorcontrib><creatorcontrib>Fan, Dou</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Haider, Daniyal</creatorcontrib><creatorcontrib>Yang, Xiaodong</creatorcontrib><creatorcontrib>Abbasi, Qammer H.</creatorcontrib><title>Detection and Diagnosis of Paralysis Agitans</title><title>IEEE access</title><addtitle>Access</addtitle><description>Humans' daily behavior can reflect the main physiological characteristics of neurological diseases. Human gait is a complex behavior produced by the coordination of multiple physiological systems, such as the nervous system and the muscular system. It can reflect the physiological state of human health, and its abnormality is an important basis for diagnosing some nervous system diseases. However, many early gait anomalies have not been effectively discovered because of medical costs and people's living customs. This paper proposes an effective, economical, and accurate non-contact cognitive diagnosis system to help early detection and diagnosis of paralysis agitans under daily life conditions. The proposed system extract data from wireless state information obtained from antenna-based data gathering module. Further, we implement data processing and gait classification systems to detect abnormal gait based on the acquired wireless data. In the experiment, the proposed system can detect the state of human gait and carries high classification accuracy up to 96.7%. The experimental results demonstrate that the proposed technique is feasible and cost-effective for healthcare applications.</description><subject>abnormal gait</subject><subject>Anomalies</subject><subject>automatic detection system</subject><subject>Classification</subject><subject>Data acquisition</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Gait</subject><subject>Nervous system</subject><subject>Neurologic disease</subject><subject>Neurological diseases</subject><subject>Paralysis</subject><subject>paralysis agitans</subject><subject>Physiology</subject><subject>State (computer science)</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><subject>wireless state information</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1rAjEQhkNpoWL9BV4Weq128uUmR1ltKwgt2J5DNptIxG5ssh78941dkc5lPpj3meFFaIxhijHI53lVLTebKQEspkQIgim7QQOCZ3JCOZ3d_qvv0SilHeQQecTLAXpa2M6azoe20G1TLLzetiH5VARXfOio96dzM9_6TrfpAd05vU92dMlD9PWy_KzeJuv311U1X08MA9FNTCmpkK5uLAdKca6YcA1QU4Kpa9NQbhoHUmNqhdHGAhhSCyYaICDZzNIhWvXcJuidOkT_reNJBe3V3yDErdKx82ZvVU0p567OoJowoKwGbJ3TGSmdFhoy67FnHWL4OdrUqV04xja_rwjjXBJZSp63aL9lYkgpWne9ikGdXVa9y-rssrq4nFXjXuWttVeF4PkRwekvFK13gQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Fan, Xiao</creator><creator>Sun, Wanrong</creator><creator>Ren, Aifeng</creator><creator>Fan, Dou</creator><creator>Zhao, Nan</creator><creator>Haider, Daniyal</creator><creator>Yang, Xiaodong</creator><creator>Abbasi, Qammer H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4701-1204</orcidid></search><sort><creationdate>2018</creationdate><title>Detection and Diagnosis of Paralysis Agitans</title><author>Fan, Xiao ; Sun, Wanrong ; Ren, Aifeng ; Fan, Dou ; Zhao, Nan ; Haider, Daniyal ; Yang, Xiaodong ; Abbasi, Qammer H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>abnormal gait</topic><topic>Anomalies</topic><topic>automatic detection system</topic><topic>Classification</topic><topic>Data acquisition</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Gait</topic><topic>Nervous system</topic><topic>Neurologic disease</topic><topic>Neurological diseases</topic><topic>Paralysis</topic><topic>paralysis agitans</topic><topic>Physiology</topic><topic>State (computer science)</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><topic>wireless state information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiao</creatorcontrib><creatorcontrib>Sun, Wanrong</creatorcontrib><creatorcontrib>Ren, Aifeng</creatorcontrib><creatorcontrib>Fan, Dou</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Haider, Daniyal</creatorcontrib><creatorcontrib>Yang, Xiaodong</creatorcontrib><creatorcontrib>Abbasi, Qammer H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiao</au><au>Sun, Wanrong</au><au>Ren, Aifeng</au><au>Fan, Dou</au><au>Zhao, Nan</au><au>Haider, Daniyal</au><au>Yang, Xiaodong</au><au>Abbasi, Qammer H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Diagnosis of Paralysis Agitans</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>73023</spage><epage>73029</epage><pages>73023-73029</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Humans' daily behavior can reflect the main physiological characteristics of neurological diseases. Human gait is a complex behavior produced by the coordination of multiple physiological systems, such as the nervous system and the muscular system. It can reflect the physiological state of human health, and its abnormality is an important basis for diagnosing some nervous system diseases. However, many early gait anomalies have not been effectively discovered because of medical costs and people's living customs. This paper proposes an effective, economical, and accurate non-contact cognitive diagnosis system to help early detection and diagnosis of paralysis agitans under daily life conditions. The proposed system extract data from wireless state information obtained from antenna-based data gathering module. Further, we implement data processing and gait classification systems to detect abnormal gait based on the acquired wireless data. In the experiment, the proposed system can detect the state of human gait and carries high classification accuracy up to 96.7%. The experimental results demonstrate that the proposed technique is feasible and cost-effective for healthcare applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2882134</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4701-1204</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018, Vol.6, p.73023-73029
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b3355fbe8cb24034b01effa00c9fa8a0
source IEEE Xplore Open Access Journals
subjects abnormal gait
Anomalies
automatic detection system
Classification
Data acquisition
Data mining
Data processing
Diagnosis
Feature extraction
Gait
Nervous system
Neurologic disease
Neurological diseases
Paralysis
paralysis agitans
Physiology
State (computer science)
Wireless communication
Wireless sensor networks
wireless state information
title Detection and Diagnosis of Paralysis Agitans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Diagnosis%20of%20Paralysis%20Agitans&rft.jtitle=IEEE%20access&rft.au=Fan,%20Xiao&rft.date=2018&rft.volume=6&rft.spage=73023&rft.epage=73029&rft.pages=73023-73029&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2882134&rft_dat=%3Cproquest_doaj_%3E2455929795%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c79389fbde503319fb48fd03c70cbbcd35cdf09a13e8cace00c2b848d020946e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455929795&rft_id=info:pmid/&rft_ieee_id=8540385&rfr_iscdi=true