Loading…

Ultra-Low-Voltage CMOS-Based Current Bleeding Mixer with High LO-RF Isolation

This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, P...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-5
Main Authors: Chong, Wei Keat, Ramiah, H., Sidek, Roslina Mohd, Tan, Gim Heng, Lioe, De Xing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm2.
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2014/163414