Loading…

Multivariate analysis for data mining to characterize poultry house environment in winter

The processing and analysis of massive high-dimensional datasets are important issues in precision livestock farming (PLF). This study explored the use of multivariate analysis tools to analyze environmental data from multiple sensors located throughout a broiler house. An experiment was conducted t...

Full description

Saved in:
Bibliographic Details
Published in:Poultry science 2024-05, Vol.103 (5), p.103633-103633, Article 103633
Main Authors: Li, Mingyang, Zhou, Zilin, Zhang, Qiang, Zhang, Jie, Suo, Yunpeng, Liu, Junze, Shen, Dan, Luo, Lu, Li, Yansen, Li, Chunmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The processing and analysis of massive high-dimensional datasets are important issues in precision livestock farming (PLF). This study explored the use of multivariate analysis tools to analyze environmental data from multiple sensors located throughout a broiler house. An experiment was conducted to collect a comprehensive set of environmental data including particulate matter (TSP, PM10, and PM2.5), ammonia, carbon dioxide, air temperature, relative humidity, and in-cage and aisle wind speeds from 60 locations in a typical commercial broiler house. The dataset was divided into 3 growth phases (wk 1–3, 4–6, and 7–9). Spearman's correlation analysis and principal component analysis (PCA) were used to investigate the latent associations between environmental variables resulting in the identification of variables that played important roles in indoor air quality. Three cluster analysis methods; k-means, k-medoids, and fuzzy c-means cluster analysis (FCM), were used to group the measured parameters based on their environmental impact in the broiler house. In general, the Spearman and PCA results showed that the in-cage wind speed, aisle wind speed, and relative humidity played critical roles in indoor air quality distribution during broiler rearing. All 3 clustering methods were found to be suitable for grouping data, with FCM outperforming the other 2. Using data clustering, the broiler house spaces were divided into 3, 2, and 2 subspaces (clusters) for wk 1 to 3, 4 to 6, and 7 to 9, respectively. The subspace in the center of the house had a poorer air quality than other subspaces.
ISSN:0032-5791
1525-3171
DOI:10.1016/j.psj.2024.103633