Loading…
Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure
A novel chip-scale metal-dielectric-metal (MDM) refractive-index sensor is proposed and investigated in this paper by using finite-difference time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT), respectively. A slot cavity with an embedded tooth-shape cavity and a side-c...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.32914-32921 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03 |
container_end_page | 32921 |
container_issue | |
container_start_page | 32914 |
container_title | IEEE access |
container_volume | 8 |
creator | Li, Zhengfeng Wen, Kunhua Chen, Li Lei, Liang Zhou, Jinyun Zhou, Dongyue Fang, Yihong Qin, Yuwen |
description | A novel chip-scale metal-dielectric-metal (MDM) refractive-index sensor is proposed and investigated in this paper by using finite-difference time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT), respectively. A slot cavity with an embedded tooth-shape cavity and a side-coupled semi-ring cavity are inserted between the input and output MDM waveguides. According to the simulation results, dual ultra-sharp and asymmetrical Fano peaks emerge in transmission spectrum with high performances. Besides, the transmission responses for the primary parameters of this structure are also investigated. To focus on developing integrated photonic devices, the original structure is successfully expanded by two additional semi-ring cavities through an innovative coupling approach, generating up to eight Fano peaks with outstanding characteristics. It is believed that this novel MDM structure will be a guideline for designing the chip-scale plasmonic devices. |
doi_str_mv | 10.1109/ACCESS.2020.2973417 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b36002636bd14d4db36ba708ead981b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8995596</ieee_id><doaj_id>oai_doaj_org_article_b36002636bd14d4db36ba708ead981b3</doaj_id><sourcerecordid>2454725259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03</originalsourceid><addsrcrecordid>eNpNUctKxDAULaKg6HzBbAKuO-bdZqn1NeAoOLoOaXKrHWpTk1bw741WxLu5D87jwsmyJcErQrA6O6-qq-12RTHFK6oKxkmxlx1RIlXOBJP7_-bDbBHjDqcq00kUR9njxvTtMHVmbH2PfIM2Uze2Qwfo2vQePUL0vektRHRhIjiUQAbd-w_oUPXaDvnWmoTdXG7QdgyTHacAJ9lBY7oIi99-nD1fXz1Vt_ndw826Or_LLcflmANTTDpuJW9Sc1ZgUVpGVMMF4SXUjZPYleAwY1IqqI10AlPZKKokaSxmx9l61nXe7PQQ2jcTPrU3rf45-PCiTRhb24GumcSJy2TtCE9maa9NgUswTpWkZknrdNYagn-fII5656fQp_c15YIXVFChEorNKBt8jAGaP1eC9XcWes5Cf2ehf7NIrOXMagHgj1EqJYSS7Av7t4NW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454725259</pqid></control><display><type>article</type><title>Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure</title><source>IEEE Open Access Journals</source><creator>Li, Zhengfeng ; Wen, Kunhua ; Chen, Li ; Lei, Liang ; Zhou, Jinyun ; Zhou, Dongyue ; Fang, Yihong ; Qin, Yuwen</creator><creatorcontrib>Li, Zhengfeng ; Wen, Kunhua ; Chen, Li ; Lei, Liang ; Zhou, Jinyun ; Zhou, Dongyue ; Fang, Yihong ; Qin, Yuwen</creatorcontrib><description>A novel chip-scale metal-dielectric-metal (MDM) refractive-index sensor is proposed and investigated in this paper by using finite-difference time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT), respectively. A slot cavity with an embedded tooth-shape cavity and a side-coupled semi-ring cavity are inserted between the input and output MDM waveguides. According to the simulation results, dual ultra-sharp and asymmetrical Fano peaks emerge in transmission spectrum with high performances. Besides, the transmission responses for the primary parameters of this structure are also investigated. To focus on developing integrated photonic devices, the original structure is successfully expanded by two additional semi-ring cavities through an innovative coupling approach, generating up to eight Fano peaks with outstanding characteristics. It is believed that this novel MDM structure will be a guideline for designing the chip-scale plasmonic devices.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2973417</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coupled modes ; Couplings ; Fano resonance ; Finite difference methods ; Finite difference time domain method ; Interference ; metal-dielectric-metal waveguide ; Optical resonators ; Optical waveguides ; plasmonic ; refractive index sensing ; Resonators ; slow light ; Time domain analysis ; Waveguides</subject><ispartof>IEEE access, 2020, Vol.8, p.32914-32921</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03</citedby><cites>FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03</cites><orcidid>0000-0002-6587-0272 ; 0000-0003-2878-8779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8995596$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Li, Zhengfeng</creatorcontrib><creatorcontrib>Wen, Kunhua</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Lei, Liang</creatorcontrib><creatorcontrib>Zhou, Jinyun</creatorcontrib><creatorcontrib>Zhou, Dongyue</creatorcontrib><creatorcontrib>Fang, Yihong</creatorcontrib><creatorcontrib>Qin, Yuwen</creatorcontrib><title>Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure</title><title>IEEE access</title><addtitle>Access</addtitle><description>A novel chip-scale metal-dielectric-metal (MDM) refractive-index sensor is proposed and investigated in this paper by using finite-difference time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT), respectively. A slot cavity with an embedded tooth-shape cavity and a side-coupled semi-ring cavity are inserted between the input and output MDM waveguides. According to the simulation results, dual ultra-sharp and asymmetrical Fano peaks emerge in transmission spectrum with high performances. Besides, the transmission responses for the primary parameters of this structure are also investigated. To focus on developing integrated photonic devices, the original structure is successfully expanded by two additional semi-ring cavities through an innovative coupling approach, generating up to eight Fano peaks with outstanding characteristics. It is believed that this novel MDM structure will be a guideline for designing the chip-scale plasmonic devices.</description><subject>Coupled modes</subject><subject>Couplings</subject><subject>Fano resonance</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>Interference</subject><subject>metal-dielectric-metal waveguide</subject><subject>Optical resonators</subject><subject>Optical waveguides</subject><subject>plasmonic</subject><subject>refractive index sensing</subject><subject>Resonators</subject><subject>slow light</subject><subject>Time domain analysis</subject><subject>Waveguides</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKxDAULaKg6HzBbAKuO-bdZqn1NeAoOLoOaXKrHWpTk1bw741WxLu5D87jwsmyJcErQrA6O6-qq-12RTHFK6oKxkmxlx1RIlXOBJP7_-bDbBHjDqcq00kUR9njxvTtMHVmbH2PfIM2Uze2Qwfo2vQePUL0vektRHRhIjiUQAbd-w_oUPXaDvnWmoTdXG7QdgyTHacAJ9lBY7oIi99-nD1fXz1Vt_ndw826Or_LLcflmANTTDpuJW9Sc1ZgUVpGVMMF4SXUjZPYleAwY1IqqI10AlPZKKokaSxmx9l61nXe7PQQ2jcTPrU3rf45-PCiTRhb24GumcSJy2TtCE9maa9NgUswTpWkZknrdNYagn-fII5656fQp_c15YIXVFChEorNKBt8jAGaP1eC9XcWes5Cf2ehf7NIrOXMagHgj1EqJYSS7Av7t4NW</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Zhengfeng</creator><creator>Wen, Kunhua</creator><creator>Chen, Li</creator><creator>Lei, Liang</creator><creator>Zhou, Jinyun</creator><creator>Zhou, Dongyue</creator><creator>Fang, Yihong</creator><creator>Qin, Yuwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6587-0272</orcidid><orcidid>https://orcid.org/0000-0003-2878-8779</orcidid></search><sort><creationdate>2020</creationdate><title>Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure</title><author>Li, Zhengfeng ; Wen, Kunhua ; Chen, Li ; Lei, Liang ; Zhou, Jinyun ; Zhou, Dongyue ; Fang, Yihong ; Qin, Yuwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coupled modes</topic><topic>Couplings</topic><topic>Fano resonance</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>Interference</topic><topic>metal-dielectric-metal waveguide</topic><topic>Optical resonators</topic><topic>Optical waveguides</topic><topic>plasmonic</topic><topic>refractive index sensing</topic><topic>Resonators</topic><topic>slow light</topic><topic>Time domain analysis</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhengfeng</creatorcontrib><creatorcontrib>Wen, Kunhua</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Lei, Liang</creatorcontrib><creatorcontrib>Zhou, Jinyun</creatorcontrib><creatorcontrib>Zhou, Dongyue</creatorcontrib><creatorcontrib>Fang, Yihong</creatorcontrib><creatorcontrib>Qin, Yuwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhengfeng</au><au>Wen, Kunhua</au><au>Chen, Li</au><au>Lei, Liang</au><au>Zhou, Jinyun</au><au>Zhou, Dongyue</au><au>Fang, Yihong</au><au>Qin, Yuwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>32914</spage><epage>32921</epage><pages>32914-32921</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A novel chip-scale metal-dielectric-metal (MDM) refractive-index sensor is proposed and investigated in this paper by using finite-difference time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT), respectively. A slot cavity with an embedded tooth-shape cavity and a side-coupled semi-ring cavity are inserted between the input and output MDM waveguides. According to the simulation results, dual ultra-sharp and asymmetrical Fano peaks emerge in transmission spectrum with high performances. Besides, the transmission responses for the primary parameters of this structure are also investigated. To focus on developing integrated photonic devices, the original structure is successfully expanded by two additional semi-ring cavities through an innovative coupling approach, generating up to eight Fano peaks with outstanding characteristics. It is believed that this novel MDM structure will be a guideline for designing the chip-scale plasmonic devices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2973417</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6587-0272</orcidid><orcidid>https://orcid.org/0000-0003-2878-8779</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.32914-32921 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b36002636bd14d4db36ba708ead981b3 |
source | IEEE Open Access Journals |
subjects | Coupled modes Couplings Fano resonance Finite difference methods Finite difference time domain method Interference metal-dielectric-metal waveguide Optical resonators Optical waveguides plasmonic refractive index sensing Resonators slow light Time domain analysis Waveguides |
title | Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulation%20of%20Multiple%20Fano%20Resonances%20Based%20on%20a%20Novel%20Chip-Scale%20MDM%20Structure&rft.jtitle=IEEE%20access&rft.au=Li,%20Zhengfeng&rft.date=2020&rft.volume=8&rft.spage=32914&rft.epage=32921&rft.pages=32914-32921&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2973417&rft_dat=%3Cproquest_doaj_%3E2454725259%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454725259&rft_id=info:pmid/&rft_ieee_id=8995596&rfr_iscdi=true |