Loading…

Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure

A novel chip-scale metal-dielectric-metal (MDM) refractive-index sensor is proposed and investigated in this paper by using finite-difference time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT), respectively. A slot cavity with an embedded tooth-shape cavity and a side-c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.32914-32921
Main Authors: Li, Zhengfeng, Wen, Kunhua, Chen, Li, Lei, Liang, Zhou, Jinyun, Zhou, Dongyue, Fang, Yihong, Qin, Yuwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03
cites cdi_FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03
container_end_page 32921
container_issue
container_start_page 32914
container_title IEEE access
container_volume 8
creator Li, Zhengfeng
Wen, Kunhua
Chen, Li
Lei, Liang
Zhou, Jinyun
Zhou, Dongyue
Fang, Yihong
Qin, Yuwen
description A novel chip-scale metal-dielectric-metal (MDM) refractive-index sensor is proposed and investigated in this paper by using finite-difference time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT), respectively. A slot cavity with an embedded tooth-shape cavity and a side-coupled semi-ring cavity are inserted between the input and output MDM waveguides. According to the simulation results, dual ultra-sharp and asymmetrical Fano peaks emerge in transmission spectrum with high performances. Besides, the transmission responses for the primary parameters of this structure are also investigated. To focus on developing integrated photonic devices, the original structure is successfully expanded by two additional semi-ring cavities through an innovative coupling approach, generating up to eight Fano peaks with outstanding characteristics. It is believed that this novel MDM structure will be a guideline for designing the chip-scale plasmonic devices.
doi_str_mv 10.1109/ACCESS.2020.2973417
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b36002636bd14d4db36ba708ead981b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8995596</ieee_id><doaj_id>oai_doaj_org_article_b36002636bd14d4db36ba708ead981b3</doaj_id><sourcerecordid>2454725259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03</originalsourceid><addsrcrecordid>eNpNUctKxDAULaKg6HzBbAKuO-bdZqn1NeAoOLoOaXKrHWpTk1bw741WxLu5D87jwsmyJcErQrA6O6-qq-12RTHFK6oKxkmxlx1RIlXOBJP7_-bDbBHjDqcq00kUR9njxvTtMHVmbH2PfIM2Uze2Qwfo2vQePUL0vektRHRhIjiUQAbd-w_oUPXaDvnWmoTdXG7QdgyTHacAJ9lBY7oIi99-nD1fXz1Vt_ndw826Or_LLcflmANTTDpuJW9Sc1ZgUVpGVMMF4SXUjZPYleAwY1IqqI10AlPZKKokaSxmx9l61nXe7PQQ2jcTPrU3rf45-PCiTRhb24GumcSJy2TtCE9maa9NgUswTpWkZknrdNYagn-fII5656fQp_c15YIXVFChEorNKBt8jAGaP1eC9XcWes5Cf2ehf7NIrOXMagHgj1EqJYSS7Av7t4NW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454725259</pqid></control><display><type>article</type><title>Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure</title><source>IEEE Open Access Journals</source><creator>Li, Zhengfeng ; Wen, Kunhua ; Chen, Li ; Lei, Liang ; Zhou, Jinyun ; Zhou, Dongyue ; Fang, Yihong ; Qin, Yuwen</creator><creatorcontrib>Li, Zhengfeng ; Wen, Kunhua ; Chen, Li ; Lei, Liang ; Zhou, Jinyun ; Zhou, Dongyue ; Fang, Yihong ; Qin, Yuwen</creatorcontrib><description>A novel chip-scale metal-dielectric-metal (MDM) refractive-index sensor is proposed and investigated in this paper by using finite-difference time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT), respectively. A slot cavity with an embedded tooth-shape cavity and a side-coupled semi-ring cavity are inserted between the input and output MDM waveguides. According to the simulation results, dual ultra-sharp and asymmetrical Fano peaks emerge in transmission spectrum with high performances. Besides, the transmission responses for the primary parameters of this structure are also investigated. To focus on developing integrated photonic devices, the original structure is successfully expanded by two additional semi-ring cavities through an innovative coupling approach, generating up to eight Fano peaks with outstanding characteristics. It is believed that this novel MDM structure will be a guideline for designing the chip-scale plasmonic devices.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2973417</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coupled modes ; Couplings ; Fano resonance ; Finite difference methods ; Finite difference time domain method ; Interference ; metal-dielectric-metal waveguide ; Optical resonators ; Optical waveguides ; plasmonic ; refractive index sensing ; Resonators ; slow light ; Time domain analysis ; Waveguides</subject><ispartof>IEEE access, 2020, Vol.8, p.32914-32921</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03</citedby><cites>FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03</cites><orcidid>0000-0002-6587-0272 ; 0000-0003-2878-8779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8995596$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Li, Zhengfeng</creatorcontrib><creatorcontrib>Wen, Kunhua</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Lei, Liang</creatorcontrib><creatorcontrib>Zhou, Jinyun</creatorcontrib><creatorcontrib>Zhou, Dongyue</creatorcontrib><creatorcontrib>Fang, Yihong</creatorcontrib><creatorcontrib>Qin, Yuwen</creatorcontrib><title>Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure</title><title>IEEE access</title><addtitle>Access</addtitle><description>A novel chip-scale metal-dielectric-metal (MDM) refractive-index sensor is proposed and investigated in this paper by using finite-difference time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT), respectively. A slot cavity with an embedded tooth-shape cavity and a side-coupled semi-ring cavity are inserted between the input and output MDM waveguides. According to the simulation results, dual ultra-sharp and asymmetrical Fano peaks emerge in transmission spectrum with high performances. Besides, the transmission responses for the primary parameters of this structure are also investigated. To focus on developing integrated photonic devices, the original structure is successfully expanded by two additional semi-ring cavities through an innovative coupling approach, generating up to eight Fano peaks with outstanding characteristics. It is believed that this novel MDM structure will be a guideline for designing the chip-scale plasmonic devices.</description><subject>Coupled modes</subject><subject>Couplings</subject><subject>Fano resonance</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>Interference</subject><subject>metal-dielectric-metal waveguide</subject><subject>Optical resonators</subject><subject>Optical waveguides</subject><subject>plasmonic</subject><subject>refractive index sensing</subject><subject>Resonators</subject><subject>slow light</subject><subject>Time domain analysis</subject><subject>Waveguides</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKxDAULaKg6HzBbAKuO-bdZqn1NeAoOLoOaXKrHWpTk1bw741WxLu5D87jwsmyJcErQrA6O6-qq-12RTHFK6oKxkmxlx1RIlXOBJP7_-bDbBHjDqcq00kUR9njxvTtMHVmbH2PfIM2Uze2Qwfo2vQePUL0vektRHRhIjiUQAbd-w_oUPXaDvnWmoTdXG7QdgyTHacAJ9lBY7oIi99-nD1fXz1Vt_ndw826Or_LLcflmANTTDpuJW9Sc1ZgUVpGVMMF4SXUjZPYleAwY1IqqI10AlPZKKokaSxmx9l61nXe7PQQ2jcTPrU3rf45-PCiTRhb24GumcSJy2TtCE9maa9NgUswTpWkZknrdNYagn-fII5656fQp_c15YIXVFChEorNKBt8jAGaP1eC9XcWes5Cf2ehf7NIrOXMagHgj1EqJYSS7Av7t4NW</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Zhengfeng</creator><creator>Wen, Kunhua</creator><creator>Chen, Li</creator><creator>Lei, Liang</creator><creator>Zhou, Jinyun</creator><creator>Zhou, Dongyue</creator><creator>Fang, Yihong</creator><creator>Qin, Yuwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6587-0272</orcidid><orcidid>https://orcid.org/0000-0003-2878-8779</orcidid></search><sort><creationdate>2020</creationdate><title>Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure</title><author>Li, Zhengfeng ; Wen, Kunhua ; Chen, Li ; Lei, Liang ; Zhou, Jinyun ; Zhou, Dongyue ; Fang, Yihong ; Qin, Yuwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coupled modes</topic><topic>Couplings</topic><topic>Fano resonance</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>Interference</topic><topic>metal-dielectric-metal waveguide</topic><topic>Optical resonators</topic><topic>Optical waveguides</topic><topic>plasmonic</topic><topic>refractive index sensing</topic><topic>Resonators</topic><topic>slow light</topic><topic>Time domain analysis</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhengfeng</creatorcontrib><creatorcontrib>Wen, Kunhua</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Lei, Liang</creatorcontrib><creatorcontrib>Zhou, Jinyun</creatorcontrib><creatorcontrib>Zhou, Dongyue</creatorcontrib><creatorcontrib>Fang, Yihong</creatorcontrib><creatorcontrib>Qin, Yuwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhengfeng</au><au>Wen, Kunhua</au><au>Chen, Li</au><au>Lei, Liang</au><au>Zhou, Jinyun</au><au>Zhou, Dongyue</au><au>Fang, Yihong</au><au>Qin, Yuwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>32914</spage><epage>32921</epage><pages>32914-32921</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A novel chip-scale metal-dielectric-metal (MDM) refractive-index sensor is proposed and investigated in this paper by using finite-difference time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT), respectively. A slot cavity with an embedded tooth-shape cavity and a side-coupled semi-ring cavity are inserted between the input and output MDM waveguides. According to the simulation results, dual ultra-sharp and asymmetrical Fano peaks emerge in transmission spectrum with high performances. Besides, the transmission responses for the primary parameters of this structure are also investigated. To focus on developing integrated photonic devices, the original structure is successfully expanded by two additional semi-ring cavities through an innovative coupling approach, generating up to eight Fano peaks with outstanding characteristics. It is believed that this novel MDM structure will be a guideline for designing the chip-scale plasmonic devices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2973417</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6587-0272</orcidid><orcidid>https://orcid.org/0000-0003-2878-8779</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.32914-32921
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b36002636bd14d4db36ba708ead981b3
source IEEE Open Access Journals
subjects Coupled modes
Couplings
Fano resonance
Finite difference methods
Finite difference time domain method
Interference
metal-dielectric-metal waveguide
Optical resonators
Optical waveguides
plasmonic
refractive index sensing
Resonators
slow light
Time domain analysis
Waveguides
title Manipulation of Multiple Fano Resonances Based on a Novel Chip-Scale MDM Structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulation%20of%20Multiple%20Fano%20Resonances%20Based%20on%20a%20Novel%20Chip-Scale%20MDM%20Structure&rft.jtitle=IEEE%20access&rft.au=Li,%20Zhengfeng&rft.date=2020&rft.volume=8&rft.spage=32914&rft.epage=32921&rft.pages=32914-32921&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2973417&rft_dat=%3Cproquest_doaj_%3E2454725259%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-e3936d4c64f6d4dc5058c319f45148ebfd60d8ed033669eba6d5026f92961fc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454725259&rft_id=info:pmid/&rft_ieee_id=8995596&rfr_iscdi=true