Loading…
Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model
This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation (MSE) technique, we develop some dis...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2022, Vol.2022 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Complexity (New York, N.Y.) |
container_volume | 2022 |
creator | Hossain, Mohammad Mobarak Abdeljabbar, Alrazi Roshid, Harun-Or Roshid, Md. Mamunur Sheikh, Abu Naim |
description | This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation (MSE) technique, we develop some disguise adaptation of analytical solutions in terms of hyperbolic, exponential, and trigonometric functions with some special parameters. We apply the dynamical system to bifurcate the model and draw distinct phase portraits on unlike parametric constraints. Following each orbit of all phase portraits, we originate bounded and unbounded solitary, periodic, and periodic rogue-type wave solutions of the KG model. These two schemes extract widespread classes of solitary, periodic, and periodic rogue-type wave solutions for the KG model jointly due to restrictions on parameters. We also analyze the effect of parameters on the obtained wave solutions and discuss why and when it changes its nature. We illustrate some dynamical features of the acquired solutions via the 3D, 2D, and contour graphics. |
doi_str_mv | 10.1155/2022/8771583 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b364e9cc49a24fcb9743da4a69ee8858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b364e9cc49a24fcb9743da4a69ee8858</doaj_id><sourcerecordid>3104856273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhVsIJMLAjgNYYsk08W-3vRyiECICRJCIpeW2y4lHHXuw3aDZcQdOwNU4CT2ZEWLFql6VvqpS1Wua5wS_IkSIY4opPZZ9T4RkD5ojgpVqsaDdw53uu5b2sn_cPClljTFWHeuPml-rYYrOxIpep1mAQyY6dB2HQ_Y5jaGavF2iS8ghuWCX6FO6maC92m4AfTHfYMdMNaRY7ntX0YzbEgpKHl2abO6g5mDRqfdgK0oR1dt_W2pCH1IcQwST0bsRQvz94-dZym4m3ycH49PmkTdjgWeHuGiu35xenbxtLz6enZ-sLlrLMautldTizmPlsR-EcZhyMnCrFLUUAxukUJZJ5phTyjtBcMckdU4Jq6jxA7BFc76f65JZ600Od_PZOpmg7wsp32iTa7Aj6IF1HJS1XBnKvR1Uz5kz3HQKQMr5-YvmxX7WJqevE5Sq12nK82OKZgRzKTras5la7imbUykZ_N-tBOudoXpnqD4YOuMv9_htmB37Hv5P_wEj7qJa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104856273</pqid></control><display><type>article</type><title>Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Hossain, Mohammad Mobarak ; Abdeljabbar, Alrazi ; Roshid, Harun-Or ; Roshid, Md. Mamunur ; Sheikh, Abu Naim</creator><contributor>Campos, Eric ; Eric Campos</contributor><creatorcontrib>Hossain, Mohammad Mobarak ; Abdeljabbar, Alrazi ; Roshid, Harun-Or ; Roshid, Md. Mamunur ; Sheikh, Abu Naim ; Campos, Eric ; Eric Campos</creatorcontrib><description>This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation (MSE) technique, we develop some disguise adaptation of analytical solutions in terms of hyperbolic, exponential, and trigonometric functions with some special parameters. We apply the dynamical system to bifurcate the model and draw distinct phase portraits on unlike parametric constraints. Following each orbit of all phase portraits, we originate bounded and unbounded solitary, periodic, and periodic rogue-type wave solutions of the KG model. These two schemes extract widespread classes of solitary, periodic, and periodic rogue-type wave solutions for the KG model jointly due to restrictions on parameters. We also analyze the effect of parameters on the obtained wave solutions and discuss why and when it changes its nature. We illustrate some dynamical features of the acquired solutions via the 3D, 2D, and contour graphics.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2022/8771583</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Dynamical systems ; Equilibrium ; Exact solutions ; Nonlinear optics ; Nonlinearity ; Optics ; Orbits ; Parameter modification ; Physics ; Solid state physics ; Trigonometric functions ; Two dimensional analysis</subject><ispartof>Complexity (New York, N.Y.), 2022, Vol.2022 (1)</ispartof><rights>Copyright © 2022 Mohammad Mobarak Hossain et al.</rights><rights>Copyright © 2022 Mohammad Mobarak Hossain et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3</citedby><cites>FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3</cites><orcidid>0000-0002-1687-623X ; 0000-0002-5775-516X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Campos, Eric</contributor><contributor>Eric Campos</contributor><creatorcontrib>Hossain, Mohammad Mobarak</creatorcontrib><creatorcontrib>Abdeljabbar, Alrazi</creatorcontrib><creatorcontrib>Roshid, Harun-Or</creatorcontrib><creatorcontrib>Roshid, Md. Mamunur</creatorcontrib><creatorcontrib>Sheikh, Abu Naim</creatorcontrib><title>Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model</title><title>Complexity (New York, N.Y.)</title><description>This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation (MSE) technique, we develop some disguise adaptation of analytical solutions in terms of hyperbolic, exponential, and trigonometric functions with some special parameters. We apply the dynamical system to bifurcate the model and draw distinct phase portraits on unlike parametric constraints. Following each orbit of all phase portraits, we originate bounded and unbounded solitary, periodic, and periodic rogue-type wave solutions of the KG model. These two schemes extract widespread classes of solitary, periodic, and periodic rogue-type wave solutions for the KG model jointly due to restrictions on parameters. We also analyze the effect of parameters on the obtained wave solutions and discuss why and when it changes its nature. We illustrate some dynamical features of the acquired solutions via the 3D, 2D, and contour graphics.</description><subject>Dynamical systems</subject><subject>Equilibrium</subject><subject>Exact solutions</subject><subject>Nonlinear optics</subject><subject>Nonlinearity</subject><subject>Optics</subject><subject>Orbits</subject><subject>Parameter modification</subject><subject>Physics</subject><subject>Solid state physics</subject><subject>Trigonometric functions</subject><subject>Two dimensional analysis</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1uFDEQhVsIJMLAjgNYYsk08W-3vRyiECICRJCIpeW2y4lHHXuw3aDZcQdOwNU4CT2ZEWLFql6VvqpS1Wua5wS_IkSIY4opPZZ9T4RkD5ojgpVqsaDdw53uu5b2sn_cPClljTFWHeuPml-rYYrOxIpep1mAQyY6dB2HQ_Y5jaGavF2iS8ghuWCX6FO6maC92m4AfTHfYMdMNaRY7ntX0YzbEgpKHl2abO6g5mDRqfdgK0oR1dt_W2pCH1IcQwST0bsRQvz94-dZym4m3ycH49PmkTdjgWeHuGiu35xenbxtLz6enZ-sLlrLMautldTizmPlsR-EcZhyMnCrFLUUAxukUJZJ5phTyjtBcMckdU4Jq6jxA7BFc76f65JZ600Od_PZOpmg7wsp32iTa7Aj6IF1HJS1XBnKvR1Uz5kz3HQKQMr5-YvmxX7WJqevE5Sq12nK82OKZgRzKTras5la7imbUykZ_N-tBOudoXpnqD4YOuMv9_htmB37Hv5P_wEj7qJa</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hossain, Mohammad Mobarak</creator><creator>Abdeljabbar, Alrazi</creator><creator>Roshid, Harun-Or</creator><creator>Roshid, Md. Mamunur</creator><creator>Sheikh, Abu Naim</creator><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1687-623X</orcidid><orcidid>https://orcid.org/0000-0002-5775-516X</orcidid></search><sort><creationdate>2022</creationdate><title>Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model</title><author>Hossain, Mohammad Mobarak ; Abdeljabbar, Alrazi ; Roshid, Harun-Or ; Roshid, Md. Mamunur ; Sheikh, Abu Naim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dynamical systems</topic><topic>Equilibrium</topic><topic>Exact solutions</topic><topic>Nonlinear optics</topic><topic>Nonlinearity</topic><topic>Optics</topic><topic>Orbits</topic><topic>Parameter modification</topic><topic>Physics</topic><topic>Solid state physics</topic><topic>Trigonometric functions</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Mohammad Mobarak</creatorcontrib><creatorcontrib>Abdeljabbar, Alrazi</creatorcontrib><creatorcontrib>Roshid, Harun-Or</creatorcontrib><creatorcontrib>Roshid, Md. Mamunur</creatorcontrib><creatorcontrib>Sheikh, Abu Naim</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Mohammad Mobarak</au><au>Abdeljabbar, Alrazi</au><au>Roshid, Harun-Or</au><au>Roshid, Md. Mamunur</au><au>Sheikh, Abu Naim</au><au>Campos, Eric</au><au>Eric Campos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation (MSE) technique, we develop some disguise adaptation of analytical solutions in terms of hyperbolic, exponential, and trigonometric functions with some special parameters. We apply the dynamical system to bifurcate the model and draw distinct phase portraits on unlike parametric constraints. Following each orbit of all phase portraits, we originate bounded and unbounded solitary, periodic, and periodic rogue-type wave solutions of the KG model. These two schemes extract widespread classes of solitary, periodic, and periodic rogue-type wave solutions for the KG model jointly due to restrictions on parameters. We also analyze the effect of parameters on the obtained wave solutions and discuss why and when it changes its nature. We illustrate some dynamical features of the acquired solutions via the 3D, 2D, and contour graphics.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2022/8771583</doi><orcidid>https://orcid.org/0000-0002-1687-623X</orcidid><orcidid>https://orcid.org/0000-0002-5775-516X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2022, Vol.2022 (1) |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b364e9cc49a24fcb9743da4a69ee8858 |
source | Open Access: Wiley-Blackwell Open Access Journals |
subjects | Dynamical systems Equilibrium Exact solutions Nonlinear optics Nonlinearity Optics Orbits Parameter modification Physics Solid state physics Trigonometric functions Two dimensional analysis |
title | Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abundant%20Bounded%20and%20Unbounded%20Solitary,%20Periodic,%20Rogue-Type%20Wave%20Solutions%20and%20Analysis%20of%20Parametric%20Effect%20on%20the%20Solutions%20to%20Nonlinear%20Klein%E2%80%93Gordon%20Model&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Hossain,%20Mohammad%20Mobarak&rft.date=2022&rft.volume=2022&rft.issue=1&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2022/8771583&rft_dat=%3Cproquest_doaj_%3E3104856273%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104856273&rft_id=info:pmid/&rfr_iscdi=true |