Loading…

Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model

This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation (MSE) technique, we develop some dis...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2022, Vol.2022 (1)
Main Authors: Hossain, Mohammad Mobarak, Abdeljabbar, Alrazi, Roshid, Harun-Or, Roshid, Md. Mamunur, Sheikh, Abu Naim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3
cites cdi_FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3
container_end_page
container_issue 1
container_start_page
container_title Complexity (New York, N.Y.)
container_volume 2022
creator Hossain, Mohammad Mobarak
Abdeljabbar, Alrazi
Roshid, Harun-Or
Roshid, Md. Mamunur
Sheikh, Abu Naim
description This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation (MSE) technique, we develop some disguise adaptation of analytical solutions in terms of hyperbolic, exponential, and trigonometric functions with some special parameters. We apply the dynamical system to bifurcate the model and draw distinct phase portraits on unlike parametric constraints. Following each orbit of all phase portraits, we originate bounded and unbounded solitary, periodic, and periodic rogue-type wave solutions of the KG model. These two schemes extract widespread classes of solitary, periodic, and periodic rogue-type wave solutions for the KG model jointly due to restrictions on parameters. We also analyze the effect of parameters on the obtained wave solutions and discuss why and when it changes its nature. We illustrate some dynamical features of the acquired solutions via the 3D, 2D, and contour graphics.
doi_str_mv 10.1155/2022/8771583
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b364e9cc49a24fcb9743da4a69ee8858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b364e9cc49a24fcb9743da4a69ee8858</doaj_id><sourcerecordid>3104856273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhVsIJMLAjgNYYsk08W-3vRyiECICRJCIpeW2y4lHHXuw3aDZcQdOwNU4CT2ZEWLFql6VvqpS1Wua5wS_IkSIY4opPZZ9T4RkD5ojgpVqsaDdw53uu5b2sn_cPClljTFWHeuPml-rYYrOxIpep1mAQyY6dB2HQ_Y5jaGavF2iS8ghuWCX6FO6maC92m4AfTHfYMdMNaRY7ntX0YzbEgpKHl2abO6g5mDRqfdgK0oR1dt_W2pCH1IcQwST0bsRQvz94-dZym4m3ycH49PmkTdjgWeHuGiu35xenbxtLz6enZ-sLlrLMautldTizmPlsR-EcZhyMnCrFLUUAxukUJZJ5phTyjtBcMckdU4Jq6jxA7BFc76f65JZ600Od_PZOpmg7wsp32iTa7Aj6IF1HJS1XBnKvR1Uz5kz3HQKQMr5-YvmxX7WJqevE5Sq12nK82OKZgRzKTras5la7imbUykZ_N-tBOudoXpnqD4YOuMv9_htmB37Hv5P_wEj7qJa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104856273</pqid></control><display><type>article</type><title>Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Hossain, Mohammad Mobarak ; Abdeljabbar, Alrazi ; Roshid, Harun-Or ; Roshid, Md. Mamunur ; Sheikh, Abu Naim</creator><contributor>Campos, Eric ; Eric Campos</contributor><creatorcontrib>Hossain, Mohammad Mobarak ; Abdeljabbar, Alrazi ; Roshid, Harun-Or ; Roshid, Md. Mamunur ; Sheikh, Abu Naim ; Campos, Eric ; Eric Campos</creatorcontrib><description>This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation (MSE) technique, we develop some disguise adaptation of analytical solutions in terms of hyperbolic, exponential, and trigonometric functions with some special parameters. We apply the dynamical system to bifurcate the model and draw distinct phase portraits on unlike parametric constraints. Following each orbit of all phase portraits, we originate bounded and unbounded solitary, periodic, and periodic rogue-type wave solutions of the KG model. These two schemes extract widespread classes of solitary, periodic, and periodic rogue-type wave solutions for the KG model jointly due to restrictions on parameters. We also analyze the effect of parameters on the obtained wave solutions and discuss why and when it changes its nature. We illustrate some dynamical features of the acquired solutions via the 3D, 2D, and contour graphics.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2022/8771583</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Dynamical systems ; Equilibrium ; Exact solutions ; Nonlinear optics ; Nonlinearity ; Optics ; Orbits ; Parameter modification ; Physics ; Solid state physics ; Trigonometric functions ; Two dimensional analysis</subject><ispartof>Complexity (New York, N.Y.), 2022, Vol.2022 (1)</ispartof><rights>Copyright © 2022 Mohammad Mobarak Hossain et al.</rights><rights>Copyright © 2022 Mohammad Mobarak Hossain et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3</citedby><cites>FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3</cites><orcidid>0000-0002-1687-623X ; 0000-0002-5775-516X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Campos, Eric</contributor><contributor>Eric Campos</contributor><creatorcontrib>Hossain, Mohammad Mobarak</creatorcontrib><creatorcontrib>Abdeljabbar, Alrazi</creatorcontrib><creatorcontrib>Roshid, Harun-Or</creatorcontrib><creatorcontrib>Roshid, Md. Mamunur</creatorcontrib><creatorcontrib>Sheikh, Abu Naim</creatorcontrib><title>Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model</title><title>Complexity (New York, N.Y.)</title><description>This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation (MSE) technique, we develop some disguise adaptation of analytical solutions in terms of hyperbolic, exponential, and trigonometric functions with some special parameters. We apply the dynamical system to bifurcate the model and draw distinct phase portraits on unlike parametric constraints. Following each orbit of all phase portraits, we originate bounded and unbounded solitary, periodic, and periodic rogue-type wave solutions of the KG model. These two schemes extract widespread classes of solitary, periodic, and periodic rogue-type wave solutions for the KG model jointly due to restrictions on parameters. We also analyze the effect of parameters on the obtained wave solutions and discuss why and when it changes its nature. We illustrate some dynamical features of the acquired solutions via the 3D, 2D, and contour graphics.</description><subject>Dynamical systems</subject><subject>Equilibrium</subject><subject>Exact solutions</subject><subject>Nonlinear optics</subject><subject>Nonlinearity</subject><subject>Optics</subject><subject>Orbits</subject><subject>Parameter modification</subject><subject>Physics</subject><subject>Solid state physics</subject><subject>Trigonometric functions</subject><subject>Two dimensional analysis</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1uFDEQhVsIJMLAjgNYYsk08W-3vRyiECICRJCIpeW2y4lHHXuw3aDZcQdOwNU4CT2ZEWLFql6VvqpS1Wua5wS_IkSIY4opPZZ9T4RkD5ojgpVqsaDdw53uu5b2sn_cPClljTFWHeuPml-rYYrOxIpep1mAQyY6dB2HQ_Y5jaGavF2iS8ghuWCX6FO6maC92m4AfTHfYMdMNaRY7ntX0YzbEgpKHl2abO6g5mDRqfdgK0oR1dt_W2pCH1IcQwST0bsRQvz94-dZym4m3ycH49PmkTdjgWeHuGiu35xenbxtLz6enZ-sLlrLMautldTizmPlsR-EcZhyMnCrFLUUAxukUJZJ5phTyjtBcMckdU4Jq6jxA7BFc76f65JZ600Od_PZOpmg7wsp32iTa7Aj6IF1HJS1XBnKvR1Uz5kz3HQKQMr5-YvmxX7WJqevE5Sq12nK82OKZgRzKTras5la7imbUykZ_N-tBOudoXpnqD4YOuMv9_htmB37Hv5P_wEj7qJa</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hossain, Mohammad Mobarak</creator><creator>Abdeljabbar, Alrazi</creator><creator>Roshid, Harun-Or</creator><creator>Roshid, Md. Mamunur</creator><creator>Sheikh, Abu Naim</creator><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1687-623X</orcidid><orcidid>https://orcid.org/0000-0002-5775-516X</orcidid></search><sort><creationdate>2022</creationdate><title>Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model</title><author>Hossain, Mohammad Mobarak ; Abdeljabbar, Alrazi ; Roshid, Harun-Or ; Roshid, Md. Mamunur ; Sheikh, Abu Naim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dynamical systems</topic><topic>Equilibrium</topic><topic>Exact solutions</topic><topic>Nonlinear optics</topic><topic>Nonlinearity</topic><topic>Optics</topic><topic>Orbits</topic><topic>Parameter modification</topic><topic>Physics</topic><topic>Solid state physics</topic><topic>Trigonometric functions</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Mohammad Mobarak</creatorcontrib><creatorcontrib>Abdeljabbar, Alrazi</creatorcontrib><creatorcontrib>Roshid, Harun-Or</creatorcontrib><creatorcontrib>Roshid, Md. Mamunur</creatorcontrib><creatorcontrib>Sheikh, Abu Naim</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Mohammad Mobarak</au><au>Abdeljabbar, Alrazi</au><au>Roshid, Harun-Or</au><au>Roshid, Md. Mamunur</au><au>Sheikh, Abu Naim</au><au>Campos, Eric</au><au>Eric Campos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation (MSE) technique, we develop some disguise adaptation of analytical solutions in terms of hyperbolic, exponential, and trigonometric functions with some special parameters. We apply the dynamical system to bifurcate the model and draw distinct phase portraits on unlike parametric constraints. Following each orbit of all phase portraits, we originate bounded and unbounded solitary, periodic, and periodic rogue-type wave solutions of the KG model. These two schemes extract widespread classes of solitary, periodic, and periodic rogue-type wave solutions for the KG model jointly due to restrictions on parameters. We also analyze the effect of parameters on the obtained wave solutions and discuss why and when it changes its nature. We illustrate some dynamical features of the acquired solutions via the 3D, 2D, and contour graphics.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2022/8771583</doi><orcidid>https://orcid.org/0000-0002-1687-623X</orcidid><orcidid>https://orcid.org/0000-0002-5775-516X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2022, Vol.2022 (1)
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b364e9cc49a24fcb9743da4a69ee8858
source Open Access: Wiley-Blackwell Open Access Journals
subjects Dynamical systems
Equilibrium
Exact solutions
Nonlinear optics
Nonlinearity
Optics
Orbits
Parameter modification
Physics
Solid state physics
Trigonometric functions
Two dimensional analysis
title Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abundant%20Bounded%20and%20Unbounded%20Solitary,%20Periodic,%20Rogue-Type%20Wave%20Solutions%20and%20Analysis%20of%20Parametric%20Effect%20on%20the%20Solutions%20to%20Nonlinear%20Klein%E2%80%93Gordon%20Model&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Hossain,%20Mohammad%20Mobarak&rft.date=2022&rft.volume=2022&rft.issue=1&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2022/8771583&rft_dat=%3Cproquest_doaj_%3E3104856273%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-c82c06f09f0fb5ad0241b4c992c20e3b859c383d3d99fd5106382dd95c92afbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104856273&rft_id=info:pmid/&rfr_iscdi=true