Loading…

Canonical correlation analysis based on robust covariance matrix by using deterministic of minimum covariance determinant

Canonical correlation analysis (CCA) study the linear combinations between a two multivariate set of variable that have the maximum association among these two sets of variables. The main computation of the CCA is depend on the sample mean and covariance matrices, where they are very sensitive and h...

Full description

Saved in:
Bibliographic Details
Published in:Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters 2024-09, Vol.11, p.100820, Article 100820
Main Authors: Alrawashdeh, Mufda Jameel, Saad, Sofian A.A., Mohammed, Abdelrahman Musa Ali, Alrawashdeh, Waad J.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2120-d81663183b2bfadde57400cfaeb5e07a4d2e60b90dbf1e4e755d0599d110e16a3
container_end_page
container_issue
container_start_page 100820
container_title Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters
container_volume 11
creator Alrawashdeh, Mufda Jameel
Saad, Sofian A.A.
Mohammed, Abdelrahman Musa Ali
Alrawashdeh, Waad J.A.
description Canonical correlation analysis (CCA) study the linear combinations between a two multivariate set of variable that have the maximum association among these two sets of variables. The main computation of the CCA is depend on the sample mean and covariance matrices, where they are very sensitive and highly effected by presence of outliers. In this study a new procedure is used on CCA to obtain the robust canonical correlation analysis (RCCA) to control and conquer the deformities of the sample mean and covariance matrices in contaminated data set. The deterministic of minimum covariance determinant (DetMCD) of Mia et al. (1936) is applied on CCA and the superiority performance of RCCA is demonstrated CCA method. A simulation is running for both methods on real and generation data.
doi_str_mv 10.1016/j.padiff.2024.100820
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b370c63b41b944848fc1ce3edc3b064a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666818124002067</els_id><doaj_id>oai_doaj_org_article_b370c63b41b944848fc1ce3edc3b064a</doaj_id><sourcerecordid>S2666818124002067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2120-d81663183b2bfadde57400cfaeb5e07a4d2e60b90dbf1e4e755d0599d110e16a3</originalsourceid><addsrcrecordid>eNp9kc9qHDEMxofSQkOSN-jBL7BbyfZ4Zy6FsvRPINBLczayLQcvM-Ngz4bu29ebbUtOPVl86PtZ0td1HxC2CGg-HrZPFFKMWwlSNwkGCW-6K2mM2Qw44NtX9fvuttYDAMgeFY7qqjvtaclL8jQJn0vhidaUF0ELTaeaqnBUOYimlOyOdW1Nz1QSLZ7FTGtJv4Q7iWNNy6MIvHKZ05LqmrzIUZzr-Ti_9vztoWW96d5Fmirf_nmvu4evX37uv2_uf3y723--33iJEjZhQGMUDspJFykE7ncawEdi1zPsSAfJBtwIwUVkzbu-D9CPY0AERkPquru7cEOmg30qaaZyspmSfRFyebRU2sQTW6d24I1yGt2o9aCH6NGz4uCVA6PPLH1h-ZJrLRz_8RDsOQ3bfnhJw57TsJc0mu3TxcZtz-fExVafuN0jpMJ-bYOk_wN-AxPal7E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Canonical correlation analysis based on robust covariance matrix by using deterministic of minimum covariance determinant</title><source>ScienceDirect</source><creator>Alrawashdeh, Mufda Jameel ; Saad, Sofian A.A. ; Mohammed, Abdelrahman Musa Ali ; Alrawashdeh, Waad J.A.</creator><creatorcontrib>Alrawashdeh, Mufda Jameel ; Saad, Sofian A.A. ; Mohammed, Abdelrahman Musa Ali ; Alrawashdeh, Waad J.A.</creatorcontrib><description>Canonical correlation analysis (CCA) study the linear combinations between a two multivariate set of variable that have the maximum association among these two sets of variables. The main computation of the CCA is depend on the sample mean and covariance matrices, where they are very sensitive and highly effected by presence of outliers. In this study a new procedure is used on CCA to obtain the robust canonical correlation analysis (RCCA) to control and conquer the deformities of the sample mean and covariance matrices in contaminated data set. The deterministic of minimum covariance determinant (DetMCD) of Mia et al. (1936) is applied on CCA and the superiority performance of RCCA is demonstrated CCA method. A simulation is running for both methods on real and generation data.</description><identifier>ISSN: 2666-8181</identifier><identifier>EISSN: 2666-8181</identifier><identifier>DOI: 10.1016/j.padiff.2024.100820</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Canonical correlation analysis ; Covariance matrices ; DetMCD ; Robust estimation ; Statistical model</subject><ispartof>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters, 2024-09, Vol.11, p.100820, Article 100820</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2120-d81663183b2bfadde57400cfaeb5e07a4d2e60b90dbf1e4e755d0599d110e16a3</cites><orcidid>0000-0001-8896-4872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666818124002067$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids></links><search><creatorcontrib>Alrawashdeh, Mufda Jameel</creatorcontrib><creatorcontrib>Saad, Sofian A.A.</creatorcontrib><creatorcontrib>Mohammed, Abdelrahman Musa Ali</creatorcontrib><creatorcontrib>Alrawashdeh, Waad J.A.</creatorcontrib><title>Canonical correlation analysis based on robust covariance matrix by using deterministic of minimum covariance determinant</title><title>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</title><description>Canonical correlation analysis (CCA) study the linear combinations between a two multivariate set of variable that have the maximum association among these two sets of variables. The main computation of the CCA is depend on the sample mean and covariance matrices, where they are very sensitive and highly effected by presence of outliers. In this study a new procedure is used on CCA to obtain the robust canonical correlation analysis (RCCA) to control and conquer the deformities of the sample mean and covariance matrices in contaminated data set. The deterministic of minimum covariance determinant (DetMCD) of Mia et al. (1936) is applied on CCA and the superiority performance of RCCA is demonstrated CCA method. A simulation is running for both methods on real and generation data.</description><subject>Canonical correlation analysis</subject><subject>Covariance matrices</subject><subject>DetMCD</subject><subject>Robust estimation</subject><subject>Statistical model</subject><issn>2666-8181</issn><issn>2666-8181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc9qHDEMxofSQkOSN-jBL7BbyfZ4Zy6FsvRPINBLczayLQcvM-Ngz4bu29ebbUtOPVl86PtZ0td1HxC2CGg-HrZPFFKMWwlSNwkGCW-6K2mM2Qw44NtX9fvuttYDAMgeFY7qqjvtaclL8jQJn0vhidaUF0ELTaeaqnBUOYimlOyOdW1Nz1QSLZ7FTGtJv4Q7iWNNy6MIvHKZ05LqmrzIUZzr-Ti_9vztoWW96d5Fmirf_nmvu4evX37uv2_uf3y723--33iJEjZhQGMUDspJFykE7ncawEdi1zPsSAfJBtwIwUVkzbu-D9CPY0AERkPquru7cEOmg30qaaZyspmSfRFyebRU2sQTW6d24I1yGt2o9aCH6NGz4uCVA6PPLH1h-ZJrLRz_8RDsOQ3bfnhJw57TsJc0mu3TxcZtz-fExVafuN0jpMJ-bYOk_wN-AxPal7E</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Alrawashdeh, Mufda Jameel</creator><creator>Saad, Sofian A.A.</creator><creator>Mohammed, Abdelrahman Musa Ali</creator><creator>Alrawashdeh, Waad J.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8896-4872</orcidid></search><sort><creationdate>202409</creationdate><title>Canonical correlation analysis based on robust covariance matrix by using deterministic of minimum covariance determinant</title><author>Alrawashdeh, Mufda Jameel ; Saad, Sofian A.A. ; Mohammed, Abdelrahman Musa Ali ; Alrawashdeh, Waad J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2120-d81663183b2bfadde57400cfaeb5e07a4d2e60b90dbf1e4e755d0599d110e16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Canonical correlation analysis</topic><topic>Covariance matrices</topic><topic>DetMCD</topic><topic>Robust estimation</topic><topic>Statistical model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alrawashdeh, Mufda Jameel</creatorcontrib><creatorcontrib>Saad, Sofian A.A.</creatorcontrib><creatorcontrib>Mohammed, Abdelrahman Musa Ali</creatorcontrib><creatorcontrib>Alrawashdeh, Waad J.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alrawashdeh, Mufda Jameel</au><au>Saad, Sofian A.A.</au><au>Mohammed, Abdelrahman Musa Ali</au><au>Alrawashdeh, Waad J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical correlation analysis based on robust covariance matrix by using deterministic of minimum covariance determinant</atitle><jtitle>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</jtitle><date>2024-09</date><risdate>2024</risdate><volume>11</volume><spage>100820</spage><pages>100820-</pages><artnum>100820</artnum><issn>2666-8181</issn><eissn>2666-8181</eissn><abstract>Canonical correlation analysis (CCA) study the linear combinations between a two multivariate set of variable that have the maximum association among these two sets of variables. The main computation of the CCA is depend on the sample mean and covariance matrices, where they are very sensitive and highly effected by presence of outliers. In this study a new procedure is used on CCA to obtain the robust canonical correlation analysis (RCCA) to control and conquer the deformities of the sample mean and covariance matrices in contaminated data set. The deterministic of minimum covariance determinant (DetMCD) of Mia et al. (1936) is applied on CCA and the superiority performance of RCCA is demonstrated CCA method. A simulation is running for both methods on real and generation data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.padiff.2024.100820</doi><orcidid>https://orcid.org/0000-0001-8896-4872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-8181
ispartof Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters, 2024-09, Vol.11, p.100820, Article 100820
issn 2666-8181
2666-8181
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b370c63b41b944848fc1ce3edc3b064a
source ScienceDirect
subjects Canonical correlation analysis
Covariance matrices
DetMCD
Robust estimation
Statistical model
title Canonical correlation analysis based on robust covariance matrix by using deterministic of minimum covariance determinant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20correlation%20analysis%20based%20on%20robust%20covariance%20matrix%20by%20using%20deterministic%20of%20minimum%20covariance%20determinant&rft.jtitle=Partial%20differential%20equations%20in%20applied%20mathematics%20:%20a%20spin-off%20of%20Applied%20Mathematics%20Letters&rft.au=Alrawashdeh,%20Mufda%20Jameel&rft.date=2024-09&rft.volume=11&rft.spage=100820&rft.pages=100820-&rft.artnum=100820&rft.issn=2666-8181&rft.eissn=2666-8181&rft_id=info:doi/10.1016/j.padiff.2024.100820&rft_dat=%3Celsevier_doaj_%3ES2666818124002067%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2120-d81663183b2bfadde57400cfaeb5e07a4d2e60b90dbf1e4e755d0599d110e16a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true