Loading…

A circuit view of deep brain stimulation in Alzheimer's disease and the possible mechanisms

Alzheimer's disease (AD) is characterized by chronic progressive cognitive deterioration frequently accompanied by psychopathological symptoms, including changes in personality and social isolation, which severely reduce quality of life. Currently, no viable therapies or present-day drugs devel...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurodegeneration 2019-08, Vol.14 (1), p.33-33, Article 33
Main Authors: Yu, Danfang, Yan, Huanhuan, Zhou, Jun, Yang, Xiaodan, Lu, Youming, Han, Yunyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alzheimer's disease (AD) is characterized by chronic progressive cognitive deterioration frequently accompanied by psychopathological symptoms, including changes in personality and social isolation, which severely reduce quality of life. Currently, no viable therapies or present-day drugs developed for the treatment of AD symptoms are able to slow or reverse AD progression or prevent the advance of neurodegeneration. As such, non-drug alternatives are currently being tested, including deep brain stimulation (DBS). DBS is an established therapy for several neurological and psychiatric indications, such as movement disorders. Studies assessing DBS for other disorders have also found improvements in cognitive function, providing the impetus for clinical trials on DBS for AD. Targets of DBS in AD clinical trials and animal model studies include the fornix, entorhinal cortex (EC), nucleus basalis of Meynert (NBM), and vertical limb of diagonal band (VDB). However, there is still no comprehensive theory explaining the effects of DBS on AD symptoms or a consensus on which targets provide optimal benefits. This article reviews the anatomy of memory circuits related to AD, as well as studies on DBS rescue of AD in these circuits and the possible therapeutic mechanisms.
ISSN:1750-1326
1750-1326
DOI:10.1186/s13024-019-0334-4