Loading…
Effects of occipital-atlas stabilization on the upper cervical spine rotation combinations: an in vitro study
The purpose of this study is to compare axial rotation range of motion for the upper cervical spine during three movements: axial rotation, rotation + flexion + ipsilateral lateral bending and rotation + extension + contralateral lateral bending before and after occiput-atlas (C0–C1) stabilization....
Saved in:
Published in: | Scientific reports 2023-03, Vol.13 (1), p.3578-3578, Article 3578 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-5c110a08340f99669524097b9f4431dbc89aafcc540bba7930b524fad91b3c803 |
container_end_page | 3578 |
container_issue | 1 |
container_start_page | 3578 |
container_title | Scientific reports |
container_volume | 13 |
creator | Hidalgo-García, César Lorente, Ana I. López-de-Celis, Carlos Lucha-López, María Orosia Rodríguez-Sanz, Jacobo Maza-Frechín, Mario Tricás-Moreno, José Miguel Krauss, John Pérez-Bellmunt, Albert |
description | The purpose of this study is to compare axial rotation range of motion for the upper cervical spine during three movements: axial rotation, rotation + flexion + ipsilateral lateral bending and rotation + extension + contralateral lateral bending before and after occiput-atlas (C0–C1) stabilization. Ten cryopreserved C0–C2 specimens (mean age 74 years, range 63–85 years) were manually mobilized in 1. axial rotation, 2. rotation + flexion + ipsilateral lateral bending and 3. rotation + extension + contralateral lateral bending without and with a screw stabilization of C0–C1. Upper cervical range of motion and the force used to generate the motion were measured using an optical motion system and a load cell respectively. The range of motion (ROM) without C0–C1 stabilization was 9.8° ± 3.9° in right rotation + flexion + ipsilateral lateral bending and 15.5° ± 5.9° in left rotation + flexion + ipsilateral lateral bending. With stabilization, the ROM was 6.7° ± 4.3° and 13.6° ± 5.3°, respectively. The ROM without C0–C1 stabilization was 35.1° ± 6.0° in right rotation + extension + contralateral lateral bending and 29.0° ± 6.5° in left rotation + extension + contralateral lateral bending. With stabilization, the ROM was 25.7° ± 6.4° (
p
= 0.007) and 25.3° ± 7.1°, respectively. Neither rotation + flexion + ipsilateral lateral bending (left or right) or left rotation + extension + contralateral lateral bending reached statistical significance. ROM without C0–C1 stabilization was 33.9° ± 6.7° in right rotation and 28.0° ± 6.9° in left rotation. With stabilization, the ROM was 28.5° ± 7.0° (
p
= 0.005) and 23.7° ± 8.5° (
p
= 0.013) respectively. The stabilization of C0–C1 reduced the upper cervical axial rotation in right rotation + extension + contralateral lateral bending and right and left axial rotations; however, this reduction was not present in left rotation + extension + contralateral lateral bending or both combinations of rotation + flexion + ipsilateral lateral bending. |
doi_str_mv | 10.1038/s41598-023-30512-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b393e51ac15a474eb0af7762943a76d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b393e51ac15a474eb0af7762943a76d7</doaj_id><sourcerecordid>2783496335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-5c110a08340f99669524097b9f4431dbc89aafcc540bba7930b524fad91b3c803</originalsourceid><addsrcrecordid>eNp9kk1r3DAQhk1pacI2f6CHIuilFzf6smX1UCghbQOBXtqzGMnSRottuZK8kPz6atdpmuRQIdCgeeaVZnir6i3BHwlm3XnipJFdjSmrGW4IrdmL6pRi3tSUUfryUXxSnaW0w2U1VHIiX1cnrO1aTog4rcZL56zJCQWHgjF-9hmGGvIACaUM2g_-DrIPEyo731i0zLONyNi49wYGlGY_WRRDXiETRu2nY5w-IZiQn9De5xiK2NLfvqleORiSPbs_N9Wvr5c_L77X1z--XV18ua4NlyTXjSEEA-4Yx07KtpUN5VgKLR3njPTadBLAGdNwrDUIybAuhINeEs1Mh9mmulp1-wA7NUc_QrxVAbw6XoS4VRCzN4NVmklmGwKGNMAFtxqDE6Itk2Ig2l4Urc-r1rzo0fbGTjnC8ET0aWbyN2ob9krKjgjWFYEP9wIx_F5symr0ydhhgMmGJSkqSqOyZawp6Ptn6C4scSqjOlCEU0kLt6noSpkYUorWPXyGYHUwh1rNoYo51NEc6lD07nEbDyV_rVAAtgKppKatjf_e_o_sHx-CxbY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781429263</pqid></control><display><type>article</type><title>Effects of occipital-atlas stabilization on the upper cervical spine rotation combinations: an in vitro study</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hidalgo-García, César ; Lorente, Ana I. ; López-de-Celis, Carlos ; Lucha-López, María Orosia ; Rodríguez-Sanz, Jacobo ; Maza-Frechín, Mario ; Tricás-Moreno, José Miguel ; Krauss, John ; Pérez-Bellmunt, Albert</creator><creatorcontrib>Hidalgo-García, César ; Lorente, Ana I. ; López-de-Celis, Carlos ; Lucha-López, María Orosia ; Rodríguez-Sanz, Jacobo ; Maza-Frechín, Mario ; Tricás-Moreno, José Miguel ; Krauss, John ; Pérez-Bellmunt, Albert</creatorcontrib><description>The purpose of this study is to compare axial rotation range of motion for the upper cervical spine during three movements: axial rotation, rotation + flexion + ipsilateral lateral bending and rotation + extension + contralateral lateral bending before and after occiput-atlas (C0–C1) stabilization. Ten cryopreserved C0–C2 specimens (mean age 74 years, range 63–85 years) were manually mobilized in 1. axial rotation, 2. rotation + flexion + ipsilateral lateral bending and 3. rotation + extension + contralateral lateral bending without and with a screw stabilization of C0–C1. Upper cervical range of motion and the force used to generate the motion were measured using an optical motion system and a load cell respectively. The range of motion (ROM) without C0–C1 stabilization was 9.8° ± 3.9° in right rotation + flexion + ipsilateral lateral bending and 15.5° ± 5.9° in left rotation + flexion + ipsilateral lateral bending. With stabilization, the ROM was 6.7° ± 4.3° and 13.6° ± 5.3°, respectively. The ROM without C0–C1 stabilization was 35.1° ± 6.0° in right rotation + extension + contralateral lateral bending and 29.0° ± 6.5° in left rotation + extension + contralateral lateral bending. With stabilization, the ROM was 25.7° ± 6.4° (
p
= 0.007) and 25.3° ± 7.1°, respectively. Neither rotation + flexion + ipsilateral lateral bending (left or right) or left rotation + extension + contralateral lateral bending reached statistical significance. ROM without C0–C1 stabilization was 33.9° ± 6.7° in right rotation and 28.0° ± 6.9° in left rotation. With stabilization, the ROM was 28.5° ± 7.0° (
p
= 0.005) and 23.7° ± 8.5° (
p
= 0.013) respectively. The stabilization of C0–C1 reduced the upper cervical axial rotation in right rotation + extension + contralateral lateral bending and right and left axial rotations; however, this reduction was not present in left rotation + extension + contralateral lateral bending or both combinations of rotation + flexion + ipsilateral lateral bending.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-30512-3</identifier><identifier>PMID: 36864117</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/698 ; 692/700 ; Ascomycota ; Bone Screws ; Cervical Vertebrae ; Cryopreservation ; Humanities and Social Sciences ; multidisciplinary ; Range of motion ; Research Design ; Science ; Science (multidisciplinary) ; Spine ; Spine (cervical)</subject><ispartof>Scientific reports, 2023-03, Vol.13 (1), p.3578-3578, Article 3578</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c491t-5c110a08340f99669524097b9f4431dbc89aafcc540bba7930b524fad91b3c803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2781429263/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2781429263?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36864117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hidalgo-García, César</creatorcontrib><creatorcontrib>Lorente, Ana I.</creatorcontrib><creatorcontrib>López-de-Celis, Carlos</creatorcontrib><creatorcontrib>Lucha-López, María Orosia</creatorcontrib><creatorcontrib>Rodríguez-Sanz, Jacobo</creatorcontrib><creatorcontrib>Maza-Frechín, Mario</creatorcontrib><creatorcontrib>Tricás-Moreno, José Miguel</creatorcontrib><creatorcontrib>Krauss, John</creatorcontrib><creatorcontrib>Pérez-Bellmunt, Albert</creatorcontrib><title>Effects of occipital-atlas stabilization on the upper cervical spine rotation combinations: an in vitro study</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The purpose of this study is to compare axial rotation range of motion for the upper cervical spine during three movements: axial rotation, rotation + flexion + ipsilateral lateral bending and rotation + extension + contralateral lateral bending before and after occiput-atlas (C0–C1) stabilization. Ten cryopreserved C0–C2 specimens (mean age 74 years, range 63–85 years) were manually mobilized in 1. axial rotation, 2. rotation + flexion + ipsilateral lateral bending and 3. rotation + extension + contralateral lateral bending without and with a screw stabilization of C0–C1. Upper cervical range of motion and the force used to generate the motion were measured using an optical motion system and a load cell respectively. The range of motion (ROM) without C0–C1 stabilization was 9.8° ± 3.9° in right rotation + flexion + ipsilateral lateral bending and 15.5° ± 5.9° in left rotation + flexion + ipsilateral lateral bending. With stabilization, the ROM was 6.7° ± 4.3° and 13.6° ± 5.3°, respectively. The ROM without C0–C1 stabilization was 35.1° ± 6.0° in right rotation + extension + contralateral lateral bending and 29.0° ± 6.5° in left rotation + extension + contralateral lateral bending. With stabilization, the ROM was 25.7° ± 6.4° (
p
= 0.007) and 25.3° ± 7.1°, respectively. Neither rotation + flexion + ipsilateral lateral bending (left or right) or left rotation + extension + contralateral lateral bending reached statistical significance. ROM without C0–C1 stabilization was 33.9° ± 6.7° in right rotation and 28.0° ± 6.9° in left rotation. With stabilization, the ROM was 28.5° ± 7.0° (
p
= 0.005) and 23.7° ± 8.5° (
p
= 0.013) respectively. The stabilization of C0–C1 reduced the upper cervical axial rotation in right rotation + extension + contralateral lateral bending and right and left axial rotations; however, this reduction was not present in left rotation + extension + contralateral lateral bending or both combinations of rotation + flexion + ipsilateral lateral bending.</description><subject>692/698</subject><subject>692/700</subject><subject>Ascomycota</subject><subject>Bone Screws</subject><subject>Cervical Vertebrae</subject><subject>Cryopreservation</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Range of motion</subject><subject>Research Design</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spine</subject><subject>Spine (cervical)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1r3DAQhk1pacI2f6CHIuilFzf6smX1UCghbQOBXtqzGMnSRottuZK8kPz6atdpmuRQIdCgeeaVZnir6i3BHwlm3XnipJFdjSmrGW4IrdmL6pRi3tSUUfryUXxSnaW0w2U1VHIiX1cnrO1aTog4rcZL56zJCQWHgjF-9hmGGvIACaUM2g_-DrIPEyo731i0zLONyNi49wYGlGY_WRRDXiETRu2nY5w-IZiQn9De5xiK2NLfvqleORiSPbs_N9Wvr5c_L77X1z--XV18ua4NlyTXjSEEA-4Yx07KtpUN5VgKLR3njPTadBLAGdNwrDUIybAuhINeEs1Mh9mmulp1-wA7NUc_QrxVAbw6XoS4VRCzN4NVmklmGwKGNMAFtxqDE6Itk2Ig2l4Urc-r1rzo0fbGTjnC8ET0aWbyN2ob9krKjgjWFYEP9wIx_F5symr0ydhhgMmGJSkqSqOyZawp6Ptn6C4scSqjOlCEU0kLt6noSpkYUorWPXyGYHUwh1rNoYo51NEc6lD07nEbDyV_rVAAtgKppKatjf_e_o_sHx-CxbY</recordid><startdate>20230302</startdate><enddate>20230302</enddate><creator>Hidalgo-García, César</creator><creator>Lorente, Ana I.</creator><creator>López-de-Celis, Carlos</creator><creator>Lucha-López, María Orosia</creator><creator>Rodríguez-Sanz, Jacobo</creator><creator>Maza-Frechín, Mario</creator><creator>Tricás-Moreno, José Miguel</creator><creator>Krauss, John</creator><creator>Pérez-Bellmunt, Albert</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230302</creationdate><title>Effects of occipital-atlas stabilization on the upper cervical spine rotation combinations: an in vitro study</title><author>Hidalgo-García, César ; Lorente, Ana I. ; López-de-Celis, Carlos ; Lucha-López, María Orosia ; Rodríguez-Sanz, Jacobo ; Maza-Frechín, Mario ; Tricás-Moreno, José Miguel ; Krauss, John ; Pérez-Bellmunt, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-5c110a08340f99669524097b9f4431dbc89aafcc540bba7930b524fad91b3c803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>692/698</topic><topic>692/700</topic><topic>Ascomycota</topic><topic>Bone Screws</topic><topic>Cervical Vertebrae</topic><topic>Cryopreservation</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Range of motion</topic><topic>Research Design</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spine</topic><topic>Spine (cervical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hidalgo-García, César</creatorcontrib><creatorcontrib>Lorente, Ana I.</creatorcontrib><creatorcontrib>López-de-Celis, Carlos</creatorcontrib><creatorcontrib>Lucha-López, María Orosia</creatorcontrib><creatorcontrib>Rodríguez-Sanz, Jacobo</creatorcontrib><creatorcontrib>Maza-Frechín, Mario</creatorcontrib><creatorcontrib>Tricás-Moreno, José Miguel</creatorcontrib><creatorcontrib>Krauss, John</creatorcontrib><creatorcontrib>Pérez-Bellmunt, Albert</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hidalgo-García, César</au><au>Lorente, Ana I.</au><au>López-de-Celis, Carlos</au><au>Lucha-López, María Orosia</au><au>Rodríguez-Sanz, Jacobo</au><au>Maza-Frechín, Mario</au><au>Tricás-Moreno, José Miguel</au><au>Krauss, John</au><au>Pérez-Bellmunt, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of occipital-atlas stabilization on the upper cervical spine rotation combinations: an in vitro study</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2023-03-02</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>3578</spage><epage>3578</epage><pages>3578-3578</pages><artnum>3578</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The purpose of this study is to compare axial rotation range of motion for the upper cervical spine during three movements: axial rotation, rotation + flexion + ipsilateral lateral bending and rotation + extension + contralateral lateral bending before and after occiput-atlas (C0–C1) stabilization. Ten cryopreserved C0–C2 specimens (mean age 74 years, range 63–85 years) were manually mobilized in 1. axial rotation, 2. rotation + flexion + ipsilateral lateral bending and 3. rotation + extension + contralateral lateral bending without and with a screw stabilization of C0–C1. Upper cervical range of motion and the force used to generate the motion were measured using an optical motion system and a load cell respectively. The range of motion (ROM) without C0–C1 stabilization was 9.8° ± 3.9° in right rotation + flexion + ipsilateral lateral bending and 15.5° ± 5.9° in left rotation + flexion + ipsilateral lateral bending. With stabilization, the ROM was 6.7° ± 4.3° and 13.6° ± 5.3°, respectively. The ROM without C0–C1 stabilization was 35.1° ± 6.0° in right rotation + extension + contralateral lateral bending and 29.0° ± 6.5° in left rotation + extension + contralateral lateral bending. With stabilization, the ROM was 25.7° ± 6.4° (
p
= 0.007) and 25.3° ± 7.1°, respectively. Neither rotation + flexion + ipsilateral lateral bending (left or right) or left rotation + extension + contralateral lateral bending reached statistical significance. ROM without C0–C1 stabilization was 33.9° ± 6.7° in right rotation and 28.0° ± 6.9° in left rotation. With stabilization, the ROM was 28.5° ± 7.0° (
p
= 0.005) and 23.7° ± 8.5° (
p
= 0.013) respectively. The stabilization of C0–C1 reduced the upper cervical axial rotation in right rotation + extension + contralateral lateral bending and right and left axial rotations; however, this reduction was not present in left rotation + extension + contralateral lateral bending or both combinations of rotation + flexion + ipsilateral lateral bending.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36864117</pmid><doi>10.1038/s41598-023-30512-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2023-03, Vol.13 (1), p.3578-3578, Article 3578 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b393e51ac15a474eb0af7762943a76d7 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 692/698 692/700 Ascomycota Bone Screws Cervical Vertebrae Cryopreservation Humanities and Social Sciences multidisciplinary Range of motion Research Design Science Science (multidisciplinary) Spine Spine (cervical) |
title | Effects of occipital-atlas stabilization on the upper cervical spine rotation combinations: an in vitro study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20occipital-atlas%20stabilization%20on%20the%20upper%20cervical%20spine%20rotation%20combinations:%20an%20in%20vitro%20study&rft.jtitle=Scientific%20reports&rft.au=Hidalgo-Garc%C3%ADa,%20C%C3%A9sar&rft.date=2023-03-02&rft.volume=13&rft.issue=1&rft.spage=3578&rft.epage=3578&rft.pages=3578-3578&rft.artnum=3578&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-30512-3&rft_dat=%3Cproquest_doaj_%3E2783496335%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-5c110a08340f99669524097b9f4431dbc89aafcc540bba7930b524fad91b3c803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2781429263&rft_id=info:pmid/36864117&rfr_iscdi=true |