Loading…

Beyond Frequency Bands: Complementary-Ensemble-Empirical-Mode-Decomposition-Enhanced Microstate Sequence Non-Randomness Analysis for Aiding Diagnosis and Cognitive Prediction of Dementia

Exploring the spatiotemporal dynamic patterns of multi-channel electroencephalography (EEG) is crucial for interpreting dementia and related cognitive decline. Spatiotemporal patterns of EEG can be described through microstate analysis, which provides a discrete approximation of the continuous elect...

Full description

Saved in:
Bibliographic Details
Published in:Brain sciences 2024-05, Vol.14 (5), p.487
Main Authors: Wan, Wang, Gu, Zhongze, Peng, Chung-Kang, Cui, Xingran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c385t-122e538fb455453c6395f21fc17b428c0b9cdeaa4c482ba56ea4e8d95c7928a93
container_end_page
container_issue 5
container_start_page 487
container_title Brain sciences
container_volume 14
creator Wan, Wang
Gu, Zhongze
Peng, Chung-Kang
Cui, Xingran
description Exploring the spatiotemporal dynamic patterns of multi-channel electroencephalography (EEG) is crucial for interpreting dementia and related cognitive decline. Spatiotemporal patterns of EEG can be described through microstate analysis, which provides a discrete approximation of the continuous electric field patterns generated by the brain cortex. Here, we propose a novel microstate spatiotemporal dynamic indicator, termed the microstate sequence non-randomness index (MSNRI). The essence of the method lies in initially generating a sequence of microstate transition patterns through state space compression of EEG data using microstate analysis. Following this, we assess the non-randomness of these microstate patterns using information-based similarity analysis. The results suggest that this MSNRI metric is a potential marker for distinguishing between health control (HC) and frontotemporal dementia (FTD) (HC vs. FTD: 6.958 vs. 5.756, < 0.01), as well as between HC and populations with Alzheimer's disease (AD) (HC vs. AD: 6.958 vs. 5.462, < 0.001). Healthy individuals exhibit more complex macroscopic structures and non-random spatiotemporal patterns of microstates, whereas dementia disorders lead to more random spatiotemporal patterns. Additionally, we extend the proposed method by integrating the Complementary Ensemble Empirical Mode Decomposition (CEEMD) method to explore spatiotemporal dynamic patterns of microstates at specific frequency scales. Moreover, we assessed the effectiveness of this innovative method in predicting cognitive scores. The results demonstrate that the incorporation of CEEMD-enhanced microstate dynamic indicators significantly improved the prediction accuracy of Mini-Mental State Examination (MMSE) scores (R = 0.940). The CEEMD-enhanced MSNRI method not only aids in the exploration of large-scale neural changes in populations with dementia but also offers a robust tool for characterizing the dynamics of EEG microstate transitions and their impact on cognitive function.
doi_str_mv 10.3390/brainsci14050487
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b3a3cee7f67c48a5a70135922badefca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795378687</galeid><doaj_id>oai_doaj_org_article_b3a3cee7f67c48a5a70135922badefca</doaj_id><sourcerecordid>A795378687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-122e538fb455453c6395f21fc17b428c0b9cdeaa4c482ba56ea4e8d95c7928a93</originalsourceid><addsrcrecordid>eNptkk1v1DAQQCMEolXpnROyxIVLihPbccxtu7uFSi0gPs7RxB4vrhJ7sbNI-9f4dTjdUqAiPsQavXkej6conlf0jDFFX_cRnE_aVZwKylv5qDiuqWxKxmvx-K_9UXGa0g3NX0spE_RpccRaqShvxHHx8xz3wRtyEfH7Dr3ek3PwJr0hyzBuBxzRTxD35donHPsBy_W4ddFpGMrrYLBcoc5cSG5ywWfqG3iNhlw7HUOaYELy-eBF8j4Dn7I7jB5TIgsPwz65RGyIZOGM8xuycrDxYQ5mLlew8dn7A8nHiMbp-QgSLFndVuXgWfHEwpDw9O5_Uny9WH9ZviuvPry9XC6uSs1aMZVVXaNgre25EFww3TAlbF1ZXcme162mvdIGAbjmbd2DaBA4tkYJLVXdgmInxeXBawLcdNvoxtyRLoDrbgMhbjqIk9MDdj0DphGlbWS2gQBJKyZUnb0GrYbsenVwbWPIfUlTN7qkcRjAY9iljtGGMsl5RTP68gF6E3Yxd22mhOK0kar6Q20gn--8DVMEPUu7hVSCybZpZabO_kPlZXB0Oni0Lsf_SaCHhPkdU0R7f--KdvP0dQ-nL6e8uKt3149o7hN-zxr7BaK32Rk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059406791</pqid></control><display><type>article</type><title>Beyond Frequency Bands: Complementary-Ensemble-Empirical-Mode-Decomposition-Enhanced Microstate Sequence Non-Randomness Analysis for Aiding Diagnosis and Cognitive Prediction of Dementia</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><source>Coronavirus Research Database</source><creator>Wan, Wang ; Gu, Zhongze ; Peng, Chung-Kang ; Cui, Xingran</creator><creatorcontrib>Wan, Wang ; Gu, Zhongze ; Peng, Chung-Kang ; Cui, Xingran</creatorcontrib><description>Exploring the spatiotemporal dynamic patterns of multi-channel electroencephalography (EEG) is crucial for interpreting dementia and related cognitive decline. Spatiotemporal patterns of EEG can be described through microstate analysis, which provides a discrete approximation of the continuous electric field patterns generated by the brain cortex. Here, we propose a novel microstate spatiotemporal dynamic indicator, termed the microstate sequence non-randomness index (MSNRI). The essence of the method lies in initially generating a sequence of microstate transition patterns through state space compression of EEG data using microstate analysis. Following this, we assess the non-randomness of these microstate patterns using information-based similarity analysis. The results suggest that this MSNRI metric is a potential marker for distinguishing between health control (HC) and frontotemporal dementia (FTD) (HC vs. FTD: 6.958 vs. 5.756, &lt; 0.01), as well as between HC and populations with Alzheimer's disease (AD) (HC vs. AD: 6.958 vs. 5.462, &lt; 0.001). Healthy individuals exhibit more complex macroscopic structures and non-random spatiotemporal patterns of microstates, whereas dementia disorders lead to more random spatiotemporal patterns. Additionally, we extend the proposed method by integrating the Complementary Ensemble Empirical Mode Decomposition (CEEMD) method to explore spatiotemporal dynamic patterns of microstates at specific frequency scales. Moreover, we assessed the effectiveness of this innovative method in predicting cognitive scores. The results demonstrate that the incorporation of CEEMD-enhanced microstate dynamic indicators significantly improved the prediction accuracy of Mini-Mental State Examination (MMSE) scores (R = 0.940). The CEEMD-enhanced MSNRI method not only aids in the exploration of large-scale neural changes in populations with dementia but also offers a robust tool for characterizing the dynamics of EEG microstate transitions and their impact on cognitive function.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci14050487</identifier><identifier>PMID: 38790465</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Advertising executives ; Alzheimer's disease ; Biomarkers ; Brain research ; Cognitive ability ; Datasets ; Dementia ; Dementia disorders ; Disease ; EEG ; electroencephalogram ; Electroencephalography ; Frontotemporal dementia ; information-based similarity ; Medical research ; Medicine, Experimental ; Methods ; microstate transitions ; Neurodegenerative diseases ; non-randomness ; Recording sessions</subject><ispartof>Brain sciences, 2024-05, Vol.14 (5), p.487</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c385t-122e538fb455453c6395f21fc17b428c0b9cdeaa4c482ba56ea4e8d95c7928a93</cites><orcidid>0000-0003-1887-8631 ; 0000-0003-3666-9833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059406791/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059406791?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,37011,38514,43893,44588,74182,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38790465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Wang</creatorcontrib><creatorcontrib>Gu, Zhongze</creatorcontrib><creatorcontrib>Peng, Chung-Kang</creatorcontrib><creatorcontrib>Cui, Xingran</creatorcontrib><title>Beyond Frequency Bands: Complementary-Ensemble-Empirical-Mode-Decomposition-Enhanced Microstate Sequence Non-Randomness Analysis for Aiding Diagnosis and Cognitive Prediction of Dementia</title><title>Brain sciences</title><addtitle>Brain Sci</addtitle><description>Exploring the spatiotemporal dynamic patterns of multi-channel electroencephalography (EEG) is crucial for interpreting dementia and related cognitive decline. Spatiotemporal patterns of EEG can be described through microstate analysis, which provides a discrete approximation of the continuous electric field patterns generated by the brain cortex. Here, we propose a novel microstate spatiotemporal dynamic indicator, termed the microstate sequence non-randomness index (MSNRI). The essence of the method lies in initially generating a sequence of microstate transition patterns through state space compression of EEG data using microstate analysis. Following this, we assess the non-randomness of these microstate patterns using information-based similarity analysis. The results suggest that this MSNRI metric is a potential marker for distinguishing between health control (HC) and frontotemporal dementia (FTD) (HC vs. FTD: 6.958 vs. 5.756, &lt; 0.01), as well as between HC and populations with Alzheimer's disease (AD) (HC vs. AD: 6.958 vs. 5.462, &lt; 0.001). Healthy individuals exhibit more complex macroscopic structures and non-random spatiotemporal patterns of microstates, whereas dementia disorders lead to more random spatiotemporal patterns. Additionally, we extend the proposed method by integrating the Complementary Ensemble Empirical Mode Decomposition (CEEMD) method to explore spatiotemporal dynamic patterns of microstates at specific frequency scales. Moreover, we assessed the effectiveness of this innovative method in predicting cognitive scores. The results demonstrate that the incorporation of CEEMD-enhanced microstate dynamic indicators significantly improved the prediction accuracy of Mini-Mental State Examination (MMSE) scores (R = 0.940). The CEEMD-enhanced MSNRI method not only aids in the exploration of large-scale neural changes in populations with dementia but also offers a robust tool for characterizing the dynamics of EEG microstate transitions and their impact on cognitive function.</description><subject>Advertising executives</subject><subject>Alzheimer's disease</subject><subject>Biomarkers</subject><subject>Brain research</subject><subject>Cognitive ability</subject><subject>Datasets</subject><subject>Dementia</subject><subject>Dementia disorders</subject><subject>Disease</subject><subject>EEG</subject><subject>electroencephalogram</subject><subject>Electroencephalography</subject><subject>Frontotemporal dementia</subject><subject>information-based similarity</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>microstate transitions</subject><subject>Neurodegenerative diseases</subject><subject>non-randomness</subject><subject>Recording sessions</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQQCMEolXpnROyxIVLihPbccxtu7uFSi0gPs7RxB4vrhJ7sbNI-9f4dTjdUqAiPsQavXkej6conlf0jDFFX_cRnE_aVZwKylv5qDiuqWxKxmvx-K_9UXGa0g3NX0spE_RpccRaqShvxHHx8xz3wRtyEfH7Dr3ek3PwJr0hyzBuBxzRTxD35donHPsBy_W4ddFpGMrrYLBcoc5cSG5ywWfqG3iNhlw7HUOaYELy-eBF8j4Dn7I7jB5TIgsPwz65RGyIZOGM8xuycrDxYQ5mLlew8dn7A8nHiMbp-QgSLFndVuXgWfHEwpDw9O5_Uny9WH9ZviuvPry9XC6uSs1aMZVVXaNgre25EFww3TAlbF1ZXcme162mvdIGAbjmbd2DaBA4tkYJLVXdgmInxeXBawLcdNvoxtyRLoDrbgMhbjqIk9MDdj0DphGlbWS2gQBJKyZUnb0GrYbsenVwbWPIfUlTN7qkcRjAY9iljtGGMsl5RTP68gF6E3Yxd22mhOK0kar6Q20gn--8DVMEPUu7hVSCybZpZabO_kPlZXB0Oni0Lsf_SaCHhPkdU0R7f--KdvP0dQ-nL6e8uKt3149o7hN-zxr7BaK32Rk</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wan, Wang</creator><creator>Gu, Zhongze</creator><creator>Peng, Chung-Kang</creator><creator>Cui, Xingran</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1887-8631</orcidid><orcidid>https://orcid.org/0000-0003-3666-9833</orcidid></search><sort><creationdate>20240501</creationdate><title>Beyond Frequency Bands: Complementary-Ensemble-Empirical-Mode-Decomposition-Enhanced Microstate Sequence Non-Randomness Analysis for Aiding Diagnosis and Cognitive Prediction of Dementia</title><author>Wan, Wang ; Gu, Zhongze ; Peng, Chung-Kang ; Cui, Xingran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-122e538fb455453c6395f21fc17b428c0b9cdeaa4c482ba56ea4e8d95c7928a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advertising executives</topic><topic>Alzheimer's disease</topic><topic>Biomarkers</topic><topic>Brain research</topic><topic>Cognitive ability</topic><topic>Datasets</topic><topic>Dementia</topic><topic>Dementia disorders</topic><topic>Disease</topic><topic>EEG</topic><topic>electroencephalogram</topic><topic>Electroencephalography</topic><topic>Frontotemporal dementia</topic><topic>information-based similarity</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>microstate transitions</topic><topic>Neurodegenerative diseases</topic><topic>non-randomness</topic><topic>Recording sessions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Wang</creatorcontrib><creatorcontrib>Gu, Zhongze</creatorcontrib><creatorcontrib>Peng, Chung-Kang</creatorcontrib><creatorcontrib>Cui, Xingran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Wang</au><au>Gu, Zhongze</au><au>Peng, Chung-Kang</au><au>Cui, Xingran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Frequency Bands: Complementary-Ensemble-Empirical-Mode-Decomposition-Enhanced Microstate Sequence Non-Randomness Analysis for Aiding Diagnosis and Cognitive Prediction of Dementia</atitle><jtitle>Brain sciences</jtitle><addtitle>Brain Sci</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>14</volume><issue>5</issue><spage>487</spage><pages>487-</pages><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>Exploring the spatiotemporal dynamic patterns of multi-channel electroencephalography (EEG) is crucial for interpreting dementia and related cognitive decline. Spatiotemporal patterns of EEG can be described through microstate analysis, which provides a discrete approximation of the continuous electric field patterns generated by the brain cortex. Here, we propose a novel microstate spatiotemporal dynamic indicator, termed the microstate sequence non-randomness index (MSNRI). The essence of the method lies in initially generating a sequence of microstate transition patterns through state space compression of EEG data using microstate analysis. Following this, we assess the non-randomness of these microstate patterns using information-based similarity analysis. The results suggest that this MSNRI metric is a potential marker for distinguishing between health control (HC) and frontotemporal dementia (FTD) (HC vs. FTD: 6.958 vs. 5.756, &lt; 0.01), as well as between HC and populations with Alzheimer's disease (AD) (HC vs. AD: 6.958 vs. 5.462, &lt; 0.001). Healthy individuals exhibit more complex macroscopic structures and non-random spatiotemporal patterns of microstates, whereas dementia disorders lead to more random spatiotemporal patterns. Additionally, we extend the proposed method by integrating the Complementary Ensemble Empirical Mode Decomposition (CEEMD) method to explore spatiotemporal dynamic patterns of microstates at specific frequency scales. Moreover, we assessed the effectiveness of this innovative method in predicting cognitive scores. The results demonstrate that the incorporation of CEEMD-enhanced microstate dynamic indicators significantly improved the prediction accuracy of Mini-Mental State Examination (MMSE) scores (R = 0.940). The CEEMD-enhanced MSNRI method not only aids in the exploration of large-scale neural changes in populations with dementia but also offers a robust tool for characterizing the dynamics of EEG microstate transitions and their impact on cognitive function.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38790465</pmid><doi>10.3390/brainsci14050487</doi><orcidid>https://orcid.org/0000-0003-1887-8631</orcidid><orcidid>https://orcid.org/0000-0003-3666-9833</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3425
ispartof Brain sciences, 2024-05, Vol.14 (5), p.487
issn 2076-3425
2076-3425
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b3a3cee7f67c48a5a70135922badefca
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC); Coronavirus Research Database
subjects Advertising executives
Alzheimer's disease
Biomarkers
Brain research
Cognitive ability
Datasets
Dementia
Dementia disorders
Disease
EEG
electroencephalogram
Electroencephalography
Frontotemporal dementia
information-based similarity
Medical research
Medicine, Experimental
Methods
microstate transitions
Neurodegenerative diseases
non-randomness
Recording sessions
title Beyond Frequency Bands: Complementary-Ensemble-Empirical-Mode-Decomposition-Enhanced Microstate Sequence Non-Randomness Analysis for Aiding Diagnosis and Cognitive Prediction of Dementia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Frequency%20Bands:%20Complementary-Ensemble-Empirical-Mode-Decomposition-Enhanced%20Microstate%20Sequence%20Non-Randomness%20Analysis%20for%20Aiding%20Diagnosis%20and%20Cognitive%20Prediction%20of%20Dementia&rft.jtitle=Brain%20sciences&rft.au=Wan,%20Wang&rft.date=2024-05-01&rft.volume=14&rft.issue=5&rft.spage=487&rft.pages=487-&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci14050487&rft_dat=%3Cgale_doaj_%3EA795378687%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-122e538fb455453c6395f21fc17b428c0b9cdeaa4c482ba56ea4e8d95c7928a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059406791&rft_id=info:pmid/38790465&rft_galeid=A795378687&rfr_iscdi=true