Loading…
Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth
Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longi...
Saved in:
Published in: | EMBO molecular medicine 2017-12, Vol.9 (12), p.1629-1645 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6455-b918fe0a4be1f72d745c25792de52936238e23e2cab5fc361f674977377fcf093 |
---|---|
cites | cdi_FETCH-LOGICAL-c6455-b918fe0a4be1f72d745c25792de52936238e23e2cab5fc361f674977377fcf093 |
container_end_page | 1645 |
container_issue | 12 |
container_start_page | 1629 |
container_title | EMBO molecular medicine |
container_volume | 9 |
creator | Mathivet, Thomas Bouleti, Claire Van Woensel, Matthias Stanchi, Fabio Verschuere, Tina Phng, Li‐Kun Dejaegher, Joost Balcer, Marly Matsumoto, Ken Georgieva, Petya B Belmans, Jochen Sciot, Raf Stockmann, Christian Mazzone, Massimiliano De Vleeschouwer, Steven Gerhardt, Holger |
description | Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro‐inflammatory M1‐like macrophages in the early stages, followed by
in situ
repolarization to M2‐like macrophages, which produced VEGF‐A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti‐CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences.
Synopsis
Dynamic multi‐photon imaging and genetic labeling and targeting in an orthotopic tumor model reveals that progressive changes in stromal cells are the leading cause of vascular dysmorphia in glioma.
Initial tumour growth is accompanied by functional vessel patterning.
Progressive blood vessel dysmorphia coincides with bone‐marrow derived macrophage recruitment.
M2‐polarized macrophages accumulate around tumour blood vessels in glioma progression in mouse and with increasing WHO grades in humans.
Depleting macrophages or their VEGF production restore blood vessel caliber and function.
Macrophages depletion enhances efficacy of chemotherapeutic agents.
Graphical Abstract
Dynamic multi‐photon imaging and genetic labeling and targeting in an orthotopic tumor model reveals that progressive changes in stromal cells are the leading cause of vascular dysmorphia in glioma. |
doi_str_mv | 10.15252/emmm.201607445 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b3ac599960a14934a3bff514148fc011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b3ac599960a14934a3bff514148fc011</doaj_id><sourcerecordid>1970573691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6455-b918fe0a4be1f72d745c25792de52936238e23e2cab5fc361f674977377fcf093</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxS3UqlDaM7cqUs8L_nbcA1IFtEViVSHRs-U446xXSbzYWdDy15MldLUcqp488rz5zRs9hE4IPiWCCnoGXdedUkwkVpyLA3RElFAzLkv-blcreYg-5rzEWApJyg_okGrMSkboEbq93PS2C67IQ4qdLRLE1Ng-PNkhxL6oU3iAXFRtjHUxVhnaot7kLqbVItiiXqfQN0XThu1sk-LjsPiE3nvbZvj8-h6jPz-u7i5-zW5-_7y--H4zc5ILMas0KT1gyysgXtFaceGoUJrWIKhmkrISKAPqbCW8Y5J4qbhWiinlnceaHaPriVtHuzSrFDqbNibaYF4-xjOMTUNwLZiKWSe01hJbwjXjllXeC8IJL73DhIys84m1Wlcd1A76Idn2DfRtpw8L08QHIxTWo_MR8PUVkOL9GvJglnGd-vF-Q7TCQjGpt2vOJpVLMecEfreBYPOSp9nmaXZ5jhNf9o3t9H8DHAXfJsFjaGHzP565ms_n-3Q8DefVNkdIe67_YegZjZy95A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970573691</pqid></control><display><type>article</type><title>Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>Wiley_OA刊</source><creator>Mathivet, Thomas ; Bouleti, Claire ; Van Woensel, Matthias ; Stanchi, Fabio ; Verschuere, Tina ; Phng, Li‐Kun ; Dejaegher, Joost ; Balcer, Marly ; Matsumoto, Ken ; Georgieva, Petya B ; Belmans, Jochen ; Sciot, Raf ; Stockmann, Christian ; Mazzone, Massimiliano ; De Vleeschouwer, Steven ; Gerhardt, Holger</creator><creatorcontrib>Mathivet, Thomas ; Bouleti, Claire ; Van Woensel, Matthias ; Stanchi, Fabio ; Verschuere, Tina ; Phng, Li‐Kun ; Dejaegher, Joost ; Balcer, Marly ; Matsumoto, Ken ; Georgieva, Petya B ; Belmans, Jochen ; Sciot, Raf ; Stockmann, Christian ; Mazzone, Massimiliano ; De Vleeschouwer, Steven ; Gerhardt, Holger</creatorcontrib><description>Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro‐inflammatory M1‐like macrophages in the early stages, followed by
in situ
repolarization to M2‐like macrophages, which produced VEGF‐A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti‐CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences.
Synopsis
Dynamic multi‐photon imaging and genetic labeling and targeting in an orthotopic tumor model reveals that progressive changes in stromal cells are the leading cause of vascular dysmorphia in glioma.
Initial tumour growth is accompanied by functional vessel patterning.
Progressive blood vessel dysmorphia coincides with bone‐marrow derived macrophage recruitment.
M2‐polarized macrophages accumulate around tumour blood vessels in glioma progression in mouse and with increasing WHO grades in humans.
Depleting macrophages or their VEGF production restore blood vessel caliber and function.
Macrophages depletion enhances efficacy of chemotherapeutic agents.
Graphical Abstract
Dynamic multi‐photon imaging and genetic labeling and targeting in an orthotopic tumor model reveals that progressive changes in stromal cells are the leading cause of vascular dysmorphia in glioma.</description><identifier>ISSN: 1757-4676</identifier><identifier>EISSN: 1757-4684</identifier><identifier>DOI: 10.15252/emmm.201607445</identifier><identifier>PMID: 29038312</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Angiogenesis ; Animals ; Antibodies, Monoclonal - therapeutic use ; Antineoplastic Agents, Alkylating - therapeutic use ; Blood vessels ; Blood Vessels - abnormalities ; Blood Vessels - pathology ; Bone marrow ; Brain Neoplasms - blood supply ; Brain Neoplasms - drug therapy ; Brain Neoplasms - mortality ; Brain Neoplasms - pathology ; Brain tumors ; Cell Line, Tumor ; Chemotherapy ; Dacarbazine - analogs & derivatives ; Dacarbazine - therapeutic use ; Disease Models, Animal ; Drug delivery ; EMBO03 ; EMBO27 ; EMBO46 ; Female ; Glioma ; Glioma - blood supply ; Glioma - drug therapy ; Glioma - mortality ; Glioma - pathology ; Humans ; Inflammation ; live imaging ; Macrophage Colony-Stimulating Factor - immunology ; Macrophages ; Macrophages - cytology ; Macrophages - immunology ; Macrophages - metabolism ; Male ; Malignancy ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Morphogenesis ; myeloid cells ; Neovascularization, Pathologic - pathology ; Phenotype ; Proto-Oncogene Proteins c-sis - genetics ; Research Article ; Stromal cells ; Temozolomide ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; VEGF ; vessel dysmorphia</subject><ispartof>EMBO molecular medicine, 2017-12, Vol.9 (12), p.1629-1645</ispartof><rights>The Authors. Published under the terms of the CC BY 4.0 license 2017</rights><rights>2017 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2017 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6455-b918fe0a4be1f72d745c25792de52936238e23e2cab5fc361f674977377fcf093</citedby><cites>FETCH-LOGICAL-c6455-b918fe0a4be1f72d745c25792de52936238e23e2cab5fc361f674977377fcf093</cites><orcidid>0000-0002-3030-0384 ; 0000-0001-7761-1684 ; 0000-0001-8824-4015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1970573691/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1970573691?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29038312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathivet, Thomas</creatorcontrib><creatorcontrib>Bouleti, Claire</creatorcontrib><creatorcontrib>Van Woensel, Matthias</creatorcontrib><creatorcontrib>Stanchi, Fabio</creatorcontrib><creatorcontrib>Verschuere, Tina</creatorcontrib><creatorcontrib>Phng, Li‐Kun</creatorcontrib><creatorcontrib>Dejaegher, Joost</creatorcontrib><creatorcontrib>Balcer, Marly</creatorcontrib><creatorcontrib>Matsumoto, Ken</creatorcontrib><creatorcontrib>Georgieva, Petya B</creatorcontrib><creatorcontrib>Belmans, Jochen</creatorcontrib><creatorcontrib>Sciot, Raf</creatorcontrib><creatorcontrib>Stockmann, Christian</creatorcontrib><creatorcontrib>Mazzone, Massimiliano</creatorcontrib><creatorcontrib>De Vleeschouwer, Steven</creatorcontrib><creatorcontrib>Gerhardt, Holger</creatorcontrib><title>Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth</title><title>EMBO molecular medicine</title><addtitle>EMBO Mol Med</addtitle><addtitle>EMBO Mol Med</addtitle><description>Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro‐inflammatory M1‐like macrophages in the early stages, followed by
in situ
repolarization to M2‐like macrophages, which produced VEGF‐A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti‐CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences.
Synopsis
Dynamic multi‐photon imaging and genetic labeling and targeting in an orthotopic tumor model reveals that progressive changes in stromal cells are the leading cause of vascular dysmorphia in glioma.
Initial tumour growth is accompanied by functional vessel patterning.
Progressive blood vessel dysmorphia coincides with bone‐marrow derived macrophage recruitment.
M2‐polarized macrophages accumulate around tumour blood vessels in glioma progression in mouse and with increasing WHO grades in humans.
Depleting macrophages or their VEGF production restore blood vessel caliber and function.
Macrophages depletion enhances efficacy of chemotherapeutic agents.
Graphical Abstract
Dynamic multi‐photon imaging and genetic labeling and targeting in an orthotopic tumor model reveals that progressive changes in stromal cells are the leading cause of vascular dysmorphia in glioma.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - therapeutic use</subject><subject>Antineoplastic Agents, Alkylating - therapeutic use</subject><subject>Blood vessels</subject><subject>Blood Vessels - abnormalities</subject><subject>Blood Vessels - pathology</subject><subject>Bone marrow</subject><subject>Brain Neoplasms - blood supply</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - mortality</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumors</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Dacarbazine - analogs & derivatives</subject><subject>Dacarbazine - therapeutic use</subject><subject>Disease Models, Animal</subject><subject>Drug delivery</subject><subject>EMBO03</subject><subject>EMBO27</subject><subject>EMBO46</subject><subject>Female</subject><subject>Glioma</subject><subject>Glioma - blood supply</subject><subject>Glioma - drug therapy</subject><subject>Glioma - mortality</subject><subject>Glioma - pathology</subject><subject>Humans</subject><subject>Inflammation</subject><subject>live imaging</subject><subject>Macrophage Colony-Stimulating Factor - immunology</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Male</subject><subject>Malignancy</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Morphogenesis</subject><subject>myeloid cells</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Phenotype</subject><subject>Proto-Oncogene Proteins c-sis - genetics</subject><subject>Research Article</subject><subject>Stromal cells</subject><subject>Temozolomide</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>VEGF</subject><subject>vessel dysmorphia</subject><issn>1757-4676</issn><issn>1757-4684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1P3DAQxS3UqlDaM7cqUs8L_nbcA1IFtEViVSHRs-U446xXSbzYWdDy15MldLUcqp488rz5zRs9hE4IPiWCCnoGXdedUkwkVpyLA3RElFAzLkv-blcreYg-5rzEWApJyg_okGrMSkboEbq93PS2C67IQ4qdLRLE1Ng-PNkhxL6oU3iAXFRtjHUxVhnaot7kLqbVItiiXqfQN0XThu1sk-LjsPiE3nvbZvj8-h6jPz-u7i5-zW5-_7y--H4zc5ILMas0KT1gyysgXtFaceGoUJrWIKhmkrISKAPqbCW8Y5J4qbhWiinlnceaHaPriVtHuzSrFDqbNibaYF4-xjOMTUNwLZiKWSe01hJbwjXjllXeC8IJL73DhIys84m1Wlcd1A76Idn2DfRtpw8L08QHIxTWo_MR8PUVkOL9GvJglnGd-vF-Q7TCQjGpt2vOJpVLMecEfreBYPOSp9nmaXZ5jhNf9o3t9H8DHAXfJsFjaGHzP565ms_n-3Q8DefVNkdIe67_YegZjZy95A</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Mathivet, Thomas</creator><creator>Bouleti, Claire</creator><creator>Van Woensel, Matthias</creator><creator>Stanchi, Fabio</creator><creator>Verschuere, Tina</creator><creator>Phng, Li‐Kun</creator><creator>Dejaegher, Joost</creator><creator>Balcer, Marly</creator><creator>Matsumoto, Ken</creator><creator>Georgieva, Petya B</creator><creator>Belmans, Jochen</creator><creator>Sciot, Raf</creator><creator>Stockmann, Christian</creator><creator>Mazzone, Massimiliano</creator><creator>De Vleeschouwer, Steven</creator><creator>Gerhardt, Holger</creator><general>Nature Publishing Group UK</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><general>Springer Nature</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3030-0384</orcidid><orcidid>https://orcid.org/0000-0001-7761-1684</orcidid><orcidid>https://orcid.org/0000-0001-8824-4015</orcidid></search><sort><creationdate>201712</creationdate><title>Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth</title><author>Mathivet, Thomas ; Bouleti, Claire ; Van Woensel, Matthias ; Stanchi, Fabio ; Verschuere, Tina ; Phng, Li‐Kun ; Dejaegher, Joost ; Balcer, Marly ; Matsumoto, Ken ; Georgieva, Petya B ; Belmans, Jochen ; Sciot, Raf ; Stockmann, Christian ; Mazzone, Massimiliano ; De Vleeschouwer, Steven ; Gerhardt, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6455-b918fe0a4be1f72d745c25792de52936238e23e2cab5fc361f674977377fcf093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - therapeutic use</topic><topic>Antineoplastic Agents, Alkylating - therapeutic use</topic><topic>Blood vessels</topic><topic>Blood Vessels - abnormalities</topic><topic>Blood Vessels - pathology</topic><topic>Bone marrow</topic><topic>Brain Neoplasms - blood supply</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - mortality</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumors</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Dacarbazine - analogs & derivatives</topic><topic>Dacarbazine - therapeutic use</topic><topic>Disease Models, Animal</topic><topic>Drug delivery</topic><topic>EMBO03</topic><topic>EMBO27</topic><topic>EMBO46</topic><topic>Female</topic><topic>Glioma</topic><topic>Glioma - blood supply</topic><topic>Glioma - drug therapy</topic><topic>Glioma - mortality</topic><topic>Glioma - pathology</topic><topic>Humans</topic><topic>Inflammation</topic><topic>live imaging</topic><topic>Macrophage Colony-Stimulating Factor - immunology</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Male</topic><topic>Malignancy</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Morphogenesis</topic><topic>myeloid cells</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Phenotype</topic><topic>Proto-Oncogene Proteins c-sis - genetics</topic><topic>Research Article</topic><topic>Stromal cells</topic><topic>Temozolomide</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>VEGF</topic><topic>vessel dysmorphia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathivet, Thomas</creatorcontrib><creatorcontrib>Bouleti, Claire</creatorcontrib><creatorcontrib>Van Woensel, Matthias</creatorcontrib><creatorcontrib>Stanchi, Fabio</creatorcontrib><creatorcontrib>Verschuere, Tina</creatorcontrib><creatorcontrib>Phng, Li‐Kun</creatorcontrib><creatorcontrib>Dejaegher, Joost</creatorcontrib><creatorcontrib>Balcer, Marly</creatorcontrib><creatorcontrib>Matsumoto, Ken</creatorcontrib><creatorcontrib>Georgieva, Petya B</creatorcontrib><creatorcontrib>Belmans, Jochen</creatorcontrib><creatorcontrib>Sciot, Raf</creatorcontrib><creatorcontrib>Stockmann, Christian</creatorcontrib><creatorcontrib>Mazzone, Massimiliano</creatorcontrib><creatorcontrib>De Vleeschouwer, Steven</creatorcontrib><creatorcontrib>Gerhardt, Holger</creatorcontrib><collection>SpringerOpen</collection><collection>Wiley_OA刊</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EMBO molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathivet, Thomas</au><au>Bouleti, Claire</au><au>Van Woensel, Matthias</au><au>Stanchi, Fabio</au><au>Verschuere, Tina</au><au>Phng, Li‐Kun</au><au>Dejaegher, Joost</au><au>Balcer, Marly</au><au>Matsumoto, Ken</au><au>Georgieva, Petya B</au><au>Belmans, Jochen</au><au>Sciot, Raf</au><au>Stockmann, Christian</au><au>Mazzone, Massimiliano</au><au>De Vleeschouwer, Steven</au><au>Gerhardt, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth</atitle><jtitle>EMBO molecular medicine</jtitle><stitle>EMBO Mol Med</stitle><addtitle>EMBO Mol Med</addtitle><date>2017-12</date><risdate>2017</risdate><volume>9</volume><issue>12</issue><spage>1629</spage><epage>1645</epage><pages>1629-1645</pages><issn>1757-4676</issn><eissn>1757-4684</eissn><abstract>Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro‐inflammatory M1‐like macrophages in the early stages, followed by
in situ
repolarization to M2‐like macrophages, which produced VEGF‐A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti‐CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences.
Synopsis
Dynamic multi‐photon imaging and genetic labeling and targeting in an orthotopic tumor model reveals that progressive changes in stromal cells are the leading cause of vascular dysmorphia in glioma.
Initial tumour growth is accompanied by functional vessel patterning.
Progressive blood vessel dysmorphia coincides with bone‐marrow derived macrophage recruitment.
M2‐polarized macrophages accumulate around tumour blood vessels in glioma progression in mouse and with increasing WHO grades in humans.
Depleting macrophages or their VEGF production restore blood vessel caliber and function.
Macrophages depletion enhances efficacy of chemotherapeutic agents.
Graphical Abstract
Dynamic multi‐photon imaging and genetic labeling and targeting in an orthotopic tumor model reveals that progressive changes in stromal cells are the leading cause of vascular dysmorphia in glioma.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29038312</pmid><doi>10.15252/emmm.201607445</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3030-0384</orcidid><orcidid>https://orcid.org/0000-0001-7761-1684</orcidid><orcidid>https://orcid.org/0000-0001-8824-4015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-4676 |
ispartof | EMBO molecular medicine, 2017-12, Vol.9 (12), p.1629-1645 |
issn | 1757-4676 1757-4684 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b3ac599960a14934a3bff514148fc011 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database; Wiley_OA刊 |
subjects | Angiogenesis Animals Antibodies, Monoclonal - therapeutic use Antineoplastic Agents, Alkylating - therapeutic use Blood vessels Blood Vessels - abnormalities Blood Vessels - pathology Bone marrow Brain Neoplasms - blood supply Brain Neoplasms - drug therapy Brain Neoplasms - mortality Brain Neoplasms - pathology Brain tumors Cell Line, Tumor Chemotherapy Dacarbazine - analogs & derivatives Dacarbazine - therapeutic use Disease Models, Animal Drug delivery EMBO03 EMBO27 EMBO46 Female Glioma Glioma - blood supply Glioma - drug therapy Glioma - mortality Glioma - pathology Humans Inflammation live imaging Macrophage Colony-Stimulating Factor - immunology Macrophages Macrophages - cytology Macrophages - immunology Macrophages - metabolism Male Malignancy Mice Mice, Inbred C57BL Mice, Transgenic Morphogenesis myeloid cells Neovascularization, Pathologic - pathology Phenotype Proto-Oncogene Proteins c-sis - genetics Research Article Stromal cells Temozolomide Vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism VEGF vessel dysmorphia |
title | Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20stroma%20reorganization%20drives%20blood%20vessel%20dysmorphia%20during%20glioma%20growth&rft.jtitle=EMBO%20molecular%20medicine&rft.au=Mathivet,%20Thomas&rft.date=2017-12&rft.volume=9&rft.issue=12&rft.spage=1629&rft.epage=1645&rft.pages=1629-1645&rft.issn=1757-4676&rft.eissn=1757-4684&rft_id=info:doi/10.15252/emmm.201607445&rft_dat=%3Cproquest_doaj_%3E1970573691%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6455-b918fe0a4be1f72d745c25792de52936238e23e2cab5fc361f674977377fcf093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970573691&rft_id=info:pmid/29038312&rfr_iscdi=true |