Loading…
Structure, ferroelectric, magnetic, and energy storage performances of lead-free Bi4Ti2.75(FeNb)0.125O12 Aurivillius ceramic by doping Fe3+ ions extracted from Padang beach sand
This work successfully synthesized single-phase Aurivillius Bi4Ti2.75(FeNb)0.125O12 using a molten salt method and the natural precursor of Fe3+ ions extracted from Padang Beach sand. The study extensively examined the phase formation, crystal structure, grain morphology, and physical properties. X-...
Saved in:
Published in: | Case studies in chemical and environmental engineering 2024-06, Vol.9, p.100679, Article 100679 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work successfully synthesized single-phase Aurivillius Bi4Ti2.75(FeNb)0.125O12 using a molten salt method and the natural precursor of Fe3+ ions extracted from Padang Beach sand. The study extensively examined the phase formation, crystal structure, grain morphology, and physical properties. X-ray diffraction (XRD) analysis combined with the Rietveld refinement technique confirms that Bi4Ti2.75(FeNb)0.125O12 adopts a B2cb orthorhombic structure. The refined atomic positions reveal that Bi3+ ions are located in the A-site within both the bismuth and perovskite layers, while the B-sites within the perovskite layers are primarily occupied by Ti4+/Nb5+/Fe3+ ions. The lower distortion of the inner B(1)O6 octahedra suggests the preference of Fe-rich clusters. The magnetization hysteresis suggests that the Bi4Ti2.75(FeNb)0.125O12 phase exhibits a weak antiferromagnetic state arising from the local short-range Fe–O–Fe antiferromagnetic ordering in the inner B(1)O6 octahedra. The electrical measurements reveal that the existence of ferroelectric ordering at room temperature comes from the structural distortion and the off-center ionic displacement. The energy storage capacity of 10.15 mJ/cm3 and efficiency (η) of 50.2% were obtained in ceramic sample under an electric field of 70 kV/cm at room temperature. |
---|---|
ISSN: | 2666-0164 2666-0164 |
DOI: | 10.1016/j.cscee.2024.100679 |