Loading…
Spin noise signatures of the self-induced Larmor precession
Bose-Einstein condensates of exciton-polaritons are known for their fascinating coherent and polarization properties. The spin state of the condensate is reflected in polarization of the exciton-polariton emission, with temporal fluctuations of this polarization being, in general, capable of reflect...
Saved in:
Published in: | Physical review research 2020-06, Vol.2 (2), p.022064, Article 022064 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bose-Einstein condensates of exciton-polaritons are known for their fascinating coherent and polarization properties. The spin state of the condensate is reflected in polarization of the exciton-polariton emission, with temporal fluctuations of this polarization being, in general, capable of reflecting quantum statistics of polaritons in the condensate. To study the polarization properties of optically trapped polariton condensates, we take advantage of the spin noise spectroscopy technique. The ratio between the noise of ellipticity of the condensate emission and its polarization plane rotation noise is found to be dependent, in a nontrivial way, on the intensity of continuous wave nonresonant laser pumping. We show that the interplay between the ellipticity and the rotation noise can be explained in terms of the competition between the self-induced Larmor precession of the condensate pseudospin and the static polarization anisotropy of the microcavity. |
---|---|
ISSN: | 2643-1564 2643-1564 |
DOI: | 10.1103/PhysRevResearch.2.022064 |