Loading…
Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes
Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases...
Saved in:
Published in: | Nature communications 2022-04, Vol.13 (1), p.2283-2283, Article 2283 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3 |
container_end_page | 2283 |
container_issue | 1 |
container_start_page | 2283 |
container_title | Nature communications |
container_volume | 13 |
creator | Jin, Shuo Yin, Jiefu Gao, Xiaosi Sharma, Arpita Chen, Pengyu Hong, Shifeng Zhao, Qing Zheng, Jingxu Deng, Yue Joo, Yong Lak Archer, Lynden A. |
description | Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm
−2
; 2.6 mAh cm
−2
). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I
2
and Zn||MnO
2
cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm
−2
and capacity of approximately 0.85 mAh cm
−2
. Finally, we demonstrate that Zn||I
2
-carbon pouch cells (9 cm
2
area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm
−2
.
Aqueous zinc batteries attract interest because of their potential for cost-effective and safe electricity storage. Here, the authors develop an in situ formed ion-oligomer nanometric interphase strategy to enable fast-charge aqueous Zn cells. |
doi_str_mv | 10.1038/s41467-022-29954-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b3f80b0b10b449e38a4991d436cada42</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b3f80b0b10b449e38a4991d436cada42</doaj_id><sourcerecordid>2655925592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEolXpC7BAEWzYBHxN7A0SqqCtVAkWsGFjTZxJjo-S-GA7Fbw9TtOWlgWWLN_--WY8-oviJSXvKOHqfRRU1E1FGKuY1lJU9ZPimBFBK9ow_vTB_qg4jXFP8uCaKiGeF0dciqZpGD0u3Nfgu8Um5-fS92UPMVV2B2HA8sdctRCxK-Hngn6JZQspYXAYy2sHpZvzoQfrYCyhiz4c7iB5qfzoBj9hKK2fDiP-wviieNbDGPH0dj0pvn_-9O3sorr6cn559vGqsrJuUiVlB3UrQAK3ElFY6DlqlattGiryDVIEa4lWrKV9pzslldRIWwW1sjnqpLjcuJ2HvTkEN0H4bTw4c3Phw2AgJGdHNC3vFWlJS0krhEauQGhNO8FrCx0IllkfNtZhaSfsLM4pwPgI-vhldjsz-GujiagF4RnwegP4mJyJ1iW0O-vnGW0yVGmdv5VFb2-zBJ9bHZOZXLQ4jjCvfTeszp0RkvE6S9_8I937Jcy5n6tKarbOrGKbygYfY8D-vmJKzOoes7nHZPeYG_eYFf3q4V_vQ-68kgV8E8T8NA8Y_ub-D_YPzqvRgg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655925592</pqid></control><display><type>article</type><title>Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jin, Shuo ; Yin, Jiefu ; Gao, Xiaosi ; Sharma, Arpita ; Chen, Pengyu ; Hong, Shifeng ; Zhao, Qing ; Zheng, Jingxu ; Deng, Yue ; Joo, Yong Lak ; Archer, Lynden A.</creator><creatorcontrib>Jin, Shuo ; Yin, Jiefu ; Gao, Xiaosi ; Sharma, Arpita ; Chen, Pengyu ; Hong, Shifeng ; Zhao, Qing ; Zheng, Jingxu ; Deng, Yue ; Joo, Yong Lak ; Archer, Lynden A.</creatorcontrib><description>Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm
−2
; 2.6 mAh cm
−2
). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I
2
and Zn||MnO
2
cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm
−2
and capacity of approximately 0.85 mAh cm
−2
. Finally, we demonstrate that Zn||I
2
-carbon pouch cells (9 cm
2
area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm
−2
.
Aqueous zinc batteries attract interest because of their potential for cost-effective and safe electricity storage. Here, the authors develop an in situ formed ion-oligomer nanometric interphase strategy to enable fast-charge aqueous Zn cells.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-29954-6</identifier><identifier>PMID: 35477721</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/301/357/404 ; 639/4077/4079/891 ; 639/638/161 ; 639/638/675 ; Aqueous electrolytes ; Batteries ; Charge density ; Current density ; Electric energy storage ; Electricity ; Electrolytes ; Electrolytic cells ; Humanities and Social Sciences ; Interphase ; Manganese dioxide ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Oligomers ; Science ; Science (multidisciplinary) ; Zinc</subject><ispartof>Nature communications, 2022-04, Vol.13 (1), p.2283-2283, Article 2283</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3</citedby><cites>FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3</cites><orcidid>0000-0002-4646-1625 ; 0000-0003-0625-9892 ; 0000-0002-0673-0560 ; 0000-0001-9032-2772 ; 0000-0002-1683-5884 ; 0000-0003-4363-900X ; 0000000306259892 ; 0000000216835884 ; 0000000246461625 ; 0000000190322772 ; 000000034363900X ; 0000000206730560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2655925592/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2655925592?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35477721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1899727$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Shuo</creatorcontrib><creatorcontrib>Yin, Jiefu</creatorcontrib><creatorcontrib>Gao, Xiaosi</creatorcontrib><creatorcontrib>Sharma, Arpita</creatorcontrib><creatorcontrib>Chen, Pengyu</creatorcontrib><creatorcontrib>Hong, Shifeng</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Zheng, Jingxu</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><creatorcontrib>Archer, Lynden A.</creatorcontrib><title>Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm
−2
; 2.6 mAh cm
−2
). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I
2
and Zn||MnO
2
cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm
−2
and capacity of approximately 0.85 mAh cm
−2
. Finally, we demonstrate that Zn||I
2
-carbon pouch cells (9 cm
2
area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm
−2
.
Aqueous zinc batteries attract interest because of their potential for cost-effective and safe electricity storage. Here, the authors develop an in situ formed ion-oligomer nanometric interphase strategy to enable fast-charge aqueous Zn cells.</description><subject>639/301/299/891</subject><subject>639/301/357/404</subject><subject>639/4077/4079/891</subject><subject>639/638/161</subject><subject>639/638/675</subject><subject>Aqueous electrolytes</subject><subject>Batteries</subject><subject>Charge density</subject><subject>Current density</subject><subject>Electric energy storage</subject><subject>Electricity</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Humanities and Social Sciences</subject><subject>Interphase</subject><subject>Manganese dioxide</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oligomers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Zinc</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiMEolXpC7BAEWzYBHxN7A0SqqCtVAkWsGFjTZxJjo-S-GA7Fbw9TtOWlgWWLN_--WY8-oviJSXvKOHqfRRU1E1FGKuY1lJU9ZPimBFBK9ow_vTB_qg4jXFP8uCaKiGeF0dciqZpGD0u3Nfgu8Um5-fS92UPMVV2B2HA8sdctRCxK-Hngn6JZQspYXAYy2sHpZvzoQfrYCyhiz4c7iB5qfzoBj9hKK2fDiP-wviieNbDGPH0dj0pvn_-9O3sorr6cn559vGqsrJuUiVlB3UrQAK3ElFY6DlqlattGiryDVIEa4lWrKV9pzslldRIWwW1sjnqpLjcuJ2HvTkEN0H4bTw4c3Phw2AgJGdHNC3vFWlJS0krhEauQGhNO8FrCx0IllkfNtZhaSfsLM4pwPgI-vhldjsz-GujiagF4RnwegP4mJyJ1iW0O-vnGW0yVGmdv5VFb2-zBJ9bHZOZXLQ4jjCvfTeszp0RkvE6S9_8I937Jcy5n6tKarbOrGKbygYfY8D-vmJKzOoes7nHZPeYG_eYFf3q4V_vQ-68kgV8E8T8NA8Y_ub-D_YPzqvRgg</recordid><startdate>20220427</startdate><enddate>20220427</enddate><creator>Jin, Shuo</creator><creator>Yin, Jiefu</creator><creator>Gao, Xiaosi</creator><creator>Sharma, Arpita</creator><creator>Chen, Pengyu</creator><creator>Hong, Shifeng</creator><creator>Zhao, Qing</creator><creator>Zheng, Jingxu</creator><creator>Deng, Yue</creator><creator>Joo, Yong Lak</creator><creator>Archer, Lynden A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4646-1625</orcidid><orcidid>https://orcid.org/0000-0003-0625-9892</orcidid><orcidid>https://orcid.org/0000-0002-0673-0560</orcidid><orcidid>https://orcid.org/0000-0001-9032-2772</orcidid><orcidid>https://orcid.org/0000-0002-1683-5884</orcidid><orcidid>https://orcid.org/0000-0003-4363-900X</orcidid><orcidid>https://orcid.org/0000000306259892</orcidid><orcidid>https://orcid.org/0000000216835884</orcidid><orcidid>https://orcid.org/0000000246461625</orcidid><orcidid>https://orcid.org/0000000190322772</orcidid><orcidid>https://orcid.org/000000034363900X</orcidid><orcidid>https://orcid.org/0000000206730560</orcidid></search><sort><creationdate>20220427</creationdate><title>Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes</title><author>Jin, Shuo ; Yin, Jiefu ; Gao, Xiaosi ; Sharma, Arpita ; Chen, Pengyu ; Hong, Shifeng ; Zhao, Qing ; Zheng, Jingxu ; Deng, Yue ; Joo, Yong Lak ; Archer, Lynden A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/299/891</topic><topic>639/301/357/404</topic><topic>639/4077/4079/891</topic><topic>639/638/161</topic><topic>639/638/675</topic><topic>Aqueous electrolytes</topic><topic>Batteries</topic><topic>Charge density</topic><topic>Current density</topic><topic>Electric energy storage</topic><topic>Electricity</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Humanities and Social Sciences</topic><topic>Interphase</topic><topic>Manganese dioxide</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oligomers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Shuo</creatorcontrib><creatorcontrib>Yin, Jiefu</creatorcontrib><creatorcontrib>Gao, Xiaosi</creatorcontrib><creatorcontrib>Sharma, Arpita</creatorcontrib><creatorcontrib>Chen, Pengyu</creatorcontrib><creatorcontrib>Hong, Shifeng</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Zheng, Jingxu</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><creatorcontrib>Archer, Lynden A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Shuo</au><au>Yin, Jiefu</au><au>Gao, Xiaosi</au><au>Sharma, Arpita</au><au>Chen, Pengyu</au><au>Hong, Shifeng</au><au>Zhao, Qing</au><au>Zheng, Jingxu</au><au>Deng, Yue</au><au>Joo, Yong Lak</au><au>Archer, Lynden A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-04-27</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>2283</spage><epage>2283</epage><pages>2283-2283</pages><artnum>2283</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm
−2
; 2.6 mAh cm
−2
). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I
2
and Zn||MnO
2
cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm
−2
and capacity of approximately 0.85 mAh cm
−2
. Finally, we demonstrate that Zn||I
2
-carbon pouch cells (9 cm
2
area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm
−2
.
Aqueous zinc batteries attract interest because of their potential for cost-effective and safe electricity storage. Here, the authors develop an in situ formed ion-oligomer nanometric interphase strategy to enable fast-charge aqueous Zn cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35477721</pmid><doi>10.1038/s41467-022-29954-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4646-1625</orcidid><orcidid>https://orcid.org/0000-0003-0625-9892</orcidid><orcidid>https://orcid.org/0000-0002-0673-0560</orcidid><orcidid>https://orcid.org/0000-0001-9032-2772</orcidid><orcidid>https://orcid.org/0000-0002-1683-5884</orcidid><orcidid>https://orcid.org/0000-0003-4363-900X</orcidid><orcidid>https://orcid.org/0000000306259892</orcidid><orcidid>https://orcid.org/0000000216835884</orcidid><orcidid>https://orcid.org/0000000246461625</orcidid><orcidid>https://orcid.org/0000000190322772</orcidid><orcidid>https://orcid.org/000000034363900X</orcidid><orcidid>https://orcid.org/0000000206730560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-04, Vol.13 (1), p.2283-2283, Article 2283 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b3f80b0b10b449e38a4991d436cada42 |
source | Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/299/891 639/301/357/404 639/4077/4079/891 639/638/161 639/638/675 Aqueous electrolytes Batteries Charge density Current density Electric energy storage Electricity Electrolytes Electrolytic cells Humanities and Social Sciences Interphase Manganese dioxide multidisciplinary NMR Nuclear magnetic resonance Oligomers Science Science (multidisciplinary) Zinc |
title | Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T08%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20fast-charge%20Zn-based%20aqueous%20batteries%20via%20interfacial%20adsorption%20of%20ion-oligomer%20complexes&rft.jtitle=Nature%20communications&rft.au=Jin,%20Shuo&rft.date=2022-04-27&rft.volume=13&rft.issue=1&rft.spage=2283&rft.epage=2283&rft.pages=2283-2283&rft.artnum=2283&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-29954-6&rft_dat=%3Cproquest_doaj_%3E2655925592%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655925592&rft_id=info:pmid/35477721&rfr_iscdi=true |