Loading…

Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes

Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-04, Vol.13 (1), p.2283-2283, Article 2283
Main Authors: Jin, Shuo, Yin, Jiefu, Gao, Xiaosi, Sharma, Arpita, Chen, Pengyu, Hong, Shifeng, Zhao, Qing, Zheng, Jingxu, Deng, Yue, Joo, Yong Lak, Archer, Lynden A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3
cites cdi_FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3
container_end_page 2283
container_issue 1
container_start_page 2283
container_title Nature communications
container_volume 13
creator Jin, Shuo
Yin, Jiefu
Gao, Xiaosi
Sharma, Arpita
Chen, Pengyu
Hong, Shifeng
Zhao, Qing
Zheng, Jingxu
Deng, Yue
Joo, Yong Lak
Archer, Lynden A.
description Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm −2 ; 2.6 mAh cm −2 ). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I 2 and Zn||MnO 2 cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm −2 and capacity of approximately 0.85 mAh cm −2 . Finally, we demonstrate that Zn||I 2 -carbon pouch cells (9 cm 2 area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm −2 . Aqueous zinc batteries attract interest because of their potential for cost-effective and safe electricity storage. Here, the authors develop an in situ formed ion-oligomer nanometric interphase strategy to enable fast-charge aqueous Zn cells.
doi_str_mv 10.1038/s41467-022-29954-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b3f80b0b10b449e38a4991d436cada42</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b3f80b0b10b449e38a4991d436cada42</doaj_id><sourcerecordid>2655925592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEolXpC7BAEWzYBHxN7A0SqqCtVAkWsGFjTZxJjo-S-GA7Fbw9TtOWlgWWLN_--WY8-oviJSXvKOHqfRRU1E1FGKuY1lJU9ZPimBFBK9ow_vTB_qg4jXFP8uCaKiGeF0dciqZpGD0u3Nfgu8Um5-fS92UPMVV2B2HA8sdctRCxK-Hngn6JZQspYXAYy2sHpZvzoQfrYCyhiz4c7iB5qfzoBj9hKK2fDiP-wviieNbDGPH0dj0pvn_-9O3sorr6cn559vGqsrJuUiVlB3UrQAK3ElFY6DlqlattGiryDVIEa4lWrKV9pzslldRIWwW1sjnqpLjcuJ2HvTkEN0H4bTw4c3Phw2AgJGdHNC3vFWlJS0krhEauQGhNO8FrCx0IllkfNtZhaSfsLM4pwPgI-vhldjsz-GujiagF4RnwegP4mJyJ1iW0O-vnGW0yVGmdv5VFb2-zBJ9bHZOZXLQ4jjCvfTeszp0RkvE6S9_8I937Jcy5n6tKarbOrGKbygYfY8D-vmJKzOoes7nHZPeYG_eYFf3q4V_vQ-68kgV8E8T8NA8Y_ub-D_YPzqvRgg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655925592</pqid></control><display><type>article</type><title>Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jin, Shuo ; Yin, Jiefu ; Gao, Xiaosi ; Sharma, Arpita ; Chen, Pengyu ; Hong, Shifeng ; Zhao, Qing ; Zheng, Jingxu ; Deng, Yue ; Joo, Yong Lak ; Archer, Lynden A.</creator><creatorcontrib>Jin, Shuo ; Yin, Jiefu ; Gao, Xiaosi ; Sharma, Arpita ; Chen, Pengyu ; Hong, Shifeng ; Zhao, Qing ; Zheng, Jingxu ; Deng, Yue ; Joo, Yong Lak ; Archer, Lynden A.</creatorcontrib><description>Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm −2 ; 2.6 mAh cm −2 ). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I 2 and Zn||MnO 2 cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm −2 and capacity of approximately 0.85 mAh cm −2 . Finally, we demonstrate that Zn||I 2 -carbon pouch cells (9 cm 2 area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm −2 . Aqueous zinc batteries attract interest because of their potential for cost-effective and safe electricity storage. Here, the authors develop an in situ formed ion-oligomer nanometric interphase strategy to enable fast-charge aqueous Zn cells.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-29954-6</identifier><identifier>PMID: 35477721</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/301/357/404 ; 639/4077/4079/891 ; 639/638/161 ; 639/638/675 ; Aqueous electrolytes ; Batteries ; Charge density ; Current density ; Electric energy storage ; Electricity ; Electrolytes ; Electrolytic cells ; Humanities and Social Sciences ; Interphase ; Manganese dioxide ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Oligomers ; Science ; Science (multidisciplinary) ; Zinc</subject><ispartof>Nature communications, 2022-04, Vol.13 (1), p.2283-2283, Article 2283</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3</citedby><cites>FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3</cites><orcidid>0000-0002-4646-1625 ; 0000-0003-0625-9892 ; 0000-0002-0673-0560 ; 0000-0001-9032-2772 ; 0000-0002-1683-5884 ; 0000-0003-4363-900X ; 0000000306259892 ; 0000000216835884 ; 0000000246461625 ; 0000000190322772 ; 000000034363900X ; 0000000206730560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2655925592/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2655925592?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35477721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1899727$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Shuo</creatorcontrib><creatorcontrib>Yin, Jiefu</creatorcontrib><creatorcontrib>Gao, Xiaosi</creatorcontrib><creatorcontrib>Sharma, Arpita</creatorcontrib><creatorcontrib>Chen, Pengyu</creatorcontrib><creatorcontrib>Hong, Shifeng</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Zheng, Jingxu</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><creatorcontrib>Archer, Lynden A.</creatorcontrib><title>Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm −2 ; 2.6 mAh cm −2 ). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I 2 and Zn||MnO 2 cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm −2 and capacity of approximately 0.85 mAh cm −2 . Finally, we demonstrate that Zn||I 2 -carbon pouch cells (9 cm 2 area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm −2 . Aqueous zinc batteries attract interest because of their potential for cost-effective and safe electricity storage. Here, the authors develop an in situ formed ion-oligomer nanometric interphase strategy to enable fast-charge aqueous Zn cells.</description><subject>639/301/299/891</subject><subject>639/301/357/404</subject><subject>639/4077/4079/891</subject><subject>639/638/161</subject><subject>639/638/675</subject><subject>Aqueous electrolytes</subject><subject>Batteries</subject><subject>Charge density</subject><subject>Current density</subject><subject>Electric energy storage</subject><subject>Electricity</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Humanities and Social Sciences</subject><subject>Interphase</subject><subject>Manganese dioxide</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oligomers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Zinc</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiMEolXpC7BAEWzYBHxN7A0SqqCtVAkWsGFjTZxJjo-S-GA7Fbw9TtOWlgWWLN_--WY8-oviJSXvKOHqfRRU1E1FGKuY1lJU9ZPimBFBK9ow_vTB_qg4jXFP8uCaKiGeF0dciqZpGD0u3Nfgu8Um5-fS92UPMVV2B2HA8sdctRCxK-Hngn6JZQspYXAYy2sHpZvzoQfrYCyhiz4c7iB5qfzoBj9hKK2fDiP-wviieNbDGPH0dj0pvn_-9O3sorr6cn559vGqsrJuUiVlB3UrQAK3ElFY6DlqlattGiryDVIEa4lWrKV9pzslldRIWwW1sjnqpLjcuJ2HvTkEN0H4bTw4c3Phw2AgJGdHNC3vFWlJS0krhEauQGhNO8FrCx0IllkfNtZhaSfsLM4pwPgI-vhldjsz-GujiagF4RnwegP4mJyJ1iW0O-vnGW0yVGmdv5VFb2-zBJ9bHZOZXLQ4jjCvfTeszp0RkvE6S9_8I937Jcy5n6tKarbOrGKbygYfY8D-vmJKzOoes7nHZPeYG_eYFf3q4V_vQ-68kgV8E8T8NA8Y_ub-D_YPzqvRgg</recordid><startdate>20220427</startdate><enddate>20220427</enddate><creator>Jin, Shuo</creator><creator>Yin, Jiefu</creator><creator>Gao, Xiaosi</creator><creator>Sharma, Arpita</creator><creator>Chen, Pengyu</creator><creator>Hong, Shifeng</creator><creator>Zhao, Qing</creator><creator>Zheng, Jingxu</creator><creator>Deng, Yue</creator><creator>Joo, Yong Lak</creator><creator>Archer, Lynden A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4646-1625</orcidid><orcidid>https://orcid.org/0000-0003-0625-9892</orcidid><orcidid>https://orcid.org/0000-0002-0673-0560</orcidid><orcidid>https://orcid.org/0000-0001-9032-2772</orcidid><orcidid>https://orcid.org/0000-0002-1683-5884</orcidid><orcidid>https://orcid.org/0000-0003-4363-900X</orcidid><orcidid>https://orcid.org/0000000306259892</orcidid><orcidid>https://orcid.org/0000000216835884</orcidid><orcidid>https://orcid.org/0000000246461625</orcidid><orcidid>https://orcid.org/0000000190322772</orcidid><orcidid>https://orcid.org/000000034363900X</orcidid><orcidid>https://orcid.org/0000000206730560</orcidid></search><sort><creationdate>20220427</creationdate><title>Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes</title><author>Jin, Shuo ; Yin, Jiefu ; Gao, Xiaosi ; Sharma, Arpita ; Chen, Pengyu ; Hong, Shifeng ; Zhao, Qing ; Zheng, Jingxu ; Deng, Yue ; Joo, Yong Lak ; Archer, Lynden A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/299/891</topic><topic>639/301/357/404</topic><topic>639/4077/4079/891</topic><topic>639/638/161</topic><topic>639/638/675</topic><topic>Aqueous electrolytes</topic><topic>Batteries</topic><topic>Charge density</topic><topic>Current density</topic><topic>Electric energy storage</topic><topic>Electricity</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Humanities and Social Sciences</topic><topic>Interphase</topic><topic>Manganese dioxide</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oligomers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Shuo</creatorcontrib><creatorcontrib>Yin, Jiefu</creatorcontrib><creatorcontrib>Gao, Xiaosi</creatorcontrib><creatorcontrib>Sharma, Arpita</creatorcontrib><creatorcontrib>Chen, Pengyu</creatorcontrib><creatorcontrib>Hong, Shifeng</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Zheng, Jingxu</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><creatorcontrib>Archer, Lynden A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Shuo</au><au>Yin, Jiefu</au><au>Gao, Xiaosi</au><au>Sharma, Arpita</au><au>Chen, Pengyu</au><au>Hong, Shifeng</au><au>Zhao, Qing</au><au>Zheng, Jingxu</au><au>Deng, Yue</au><au>Joo, Yong Lak</au><au>Archer, Lynden A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-04-27</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>2283</spage><epage>2283</epage><pages>2283-2283</pages><artnum>2283</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm −2 ; 2.6 mAh cm −2 ). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I 2 and Zn||MnO 2 cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm −2 and capacity of approximately 0.85 mAh cm −2 . Finally, we demonstrate that Zn||I 2 -carbon pouch cells (9 cm 2 area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm −2 . Aqueous zinc batteries attract interest because of their potential for cost-effective and safe electricity storage. Here, the authors develop an in situ formed ion-oligomer nanometric interphase strategy to enable fast-charge aqueous Zn cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35477721</pmid><doi>10.1038/s41467-022-29954-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4646-1625</orcidid><orcidid>https://orcid.org/0000-0003-0625-9892</orcidid><orcidid>https://orcid.org/0000-0002-0673-0560</orcidid><orcidid>https://orcid.org/0000-0001-9032-2772</orcidid><orcidid>https://orcid.org/0000-0002-1683-5884</orcidid><orcidid>https://orcid.org/0000-0003-4363-900X</orcidid><orcidid>https://orcid.org/0000000306259892</orcidid><orcidid>https://orcid.org/0000000216835884</orcidid><orcidid>https://orcid.org/0000000246461625</orcidid><orcidid>https://orcid.org/0000000190322772</orcidid><orcidid>https://orcid.org/000000034363900X</orcidid><orcidid>https://orcid.org/0000000206730560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-04, Vol.13 (1), p.2283-2283, Article 2283
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b3f80b0b10b449e38a4991d436cada42
source Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/299/891
639/301/357/404
639/4077/4079/891
639/638/161
639/638/675
Aqueous electrolytes
Batteries
Charge density
Current density
Electric energy storage
Electricity
Electrolytes
Electrolytic cells
Humanities and Social Sciences
Interphase
Manganese dioxide
multidisciplinary
NMR
Nuclear magnetic resonance
Oligomers
Science
Science (multidisciplinary)
Zinc
title Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T08%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20fast-charge%20Zn-based%20aqueous%20batteries%20via%20interfacial%20adsorption%20of%20ion-oligomer%20complexes&rft.jtitle=Nature%20communications&rft.au=Jin,%20Shuo&rft.date=2022-04-27&rft.volume=13&rft.issue=1&rft.spage=2283&rft.epage=2283&rft.pages=2283-2283&rft.artnum=2283&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-29954-6&rft_dat=%3Cproquest_doaj_%3E2655925592%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-55da6b4a5a3c5ee4caf3e9877277145eee1eacc0982b1fd9d85859e1b8a68c5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655925592&rft_id=info:pmid/35477721&rfr_iscdi=true