Loading…
Flat band fine-tuning and its photonic applications
Flat bands – single-particle energy bands – in tight-binding lattices, aka networks, have attracted attention due to the presence of macroscopic degeneracies and their sensitivity to perturbations. They support compact localized eigenstates protected by destructive interference. This makes them natu...
Saved in:
Published in: | Nanophotonics (Berlin, Germany) Germany), 2024-09, Vol.13 (21), p.3925-3944 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-5827540ce551f8816e8793015cdde6fcd776dafd49c9b3f5ab953fa89862ca523 |
container_end_page | 3944 |
container_issue | 21 |
container_start_page | 3925 |
container_title | Nanophotonics (Berlin, Germany) |
container_volume | 13 |
creator | Danieli, Carlo Andreanov, Alexei Leykam, Daniel Flach, Sergej |
description | Flat bands – single-particle energy bands – in tight-binding lattices, aka networks, have attracted attention due to the presence of macroscopic degeneracies and their sensitivity to perturbations. They support compact localized eigenstates protected by destructive interference. This makes them natural candidates for emerging exotic phases and unconventional orders. In this review we consider the recently proposed systematic ways to construct flat band networks based on symmetries or fine-tuning. We then discuss how the construction methods can be further extended, adapted or exploited in presence of perturbations, both single-particle and many-body. This strategy has lead to the discovery of non-perturbative metal-insulator transitions, fractal phases, nonlinear and quantum caging and many-body nonergodic quantum models. We discuss what implications these results may have for the design of fine-tuned nanophotonic systems including photonic crystals, nanocavities, and metasurfaces. |
doi_str_mv | 10.1515/nanoph-2024-0135 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b40aec551bbc44a2b900a77bf0e21262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b40aec551bbc44a2b900a77bf0e21262</doaj_id><sourcerecordid>3106621915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-5827540ce551f8816e8793015cdde6fcd776dafd49c9b3f5ab953fa89862ca523</originalsourceid><addsrcrecordid>eNp1kUtv1DAURiMEolXpnhWKxIZNwNevxCtAFYVKldjA2rpxnBmPMnawHar-exxSSouEN36de_z4quolkLcgQLzz6MO8byihvCHAxJPqlIKiTSeBP30wPqnOUzqQ0pRioOTz6oQpybgS9LRilxPmukc_1KPztsmLd35Xr3OXUz3vQw7emRrneXIGsws-vaiejTgle37Xn1XfLz99u_jSXH_9fHXx8boxnEFuREdbwYmxQsDYdSBt1ypGQJhhsHI0Q9vKAceBK6N6NgrslWAjdqqT1KCg7Ky62rxDwIOeoztivNUBnf69EOJOY8zOTFb3nKA15aC-N5wj7RUh2Lb9SCwFKlfX-801L_3RDsb6HHF6JH28491e78JPDSAIkJYVw5s7Qww_FpuyPrpk7DSht2FJmgGXgpJWQUFf_4MewhJ9-atCESlLNCAKRTbKxJBStOP9bYDoNWG9JazXhPWacCl59fAV9wV_8izAhw24wSnbONhdXG7L4O8F_ucGRoEpKtgv_d-2kA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106621915</pqid></control><display><type>article</type><title>Flat band fine-tuning and its photonic applications</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>De Gruyter Journals - Open Access</source><creator>Danieli, Carlo ; Andreanov, Alexei ; Leykam, Daniel ; Flach, Sergej</creator><creatorcontrib>Danieli, Carlo ; Andreanov, Alexei ; Leykam, Daniel ; Flach, Sergej</creatorcontrib><description>Flat bands – single-particle energy bands – in tight-binding lattices, aka networks, have attracted attention due to the presence of macroscopic degeneracies and their sensitivity to perturbations. They support compact localized eigenstates protected by destructive interference. This makes them natural candidates for emerging exotic phases and unconventional orders. In this review we consider the recently proposed systematic ways to construct flat band networks based on symmetries or fine-tuning. We then discuss how the construction methods can be further extended, adapted or exploited in presence of perturbations, both single-particle and many-body. This strategy has lead to the discovery of non-perturbative metal-insulator transitions, fractal phases, nonlinear and quantum caging and many-body nonergodic quantum models. We discuss what implications these results may have for the design of fine-tuned nanophotonic systems including photonic crystals, nanocavities, and metasurfaces.</description><identifier>ISSN: 2192-8614</identifier><identifier>ISSN: 2192-8606</identifier><identifier>EISSN: 2192-8614</identifier><identifier>DOI: 10.1515/nanoph-2024-0135</identifier><identifier>PMID: 39634952</identifier><language>eng</language><publisher>Germany: De Gruyter</publisher><subject>compact localized states ; Eigenvectors ; Energy bands ; fine-tuning ; flat band ; Fractal models ; Graphene ; Insulators ; Lasers ; Light ; localization of light ; Metal-insulator transition ; nonlinear regime ; Particle energy ; Perturbation ; Photonic crystals ; photonic lattices ; Physics ; Review ; Science programs ; Superconductivity ; Theoretical physics</subject><ispartof>Nanophotonics (Berlin, Germany), 2024-09, Vol.13 (21), p.3925-3944</ispartof><rights>2024 the author(s), published by De Gruyter, Berlin/Boston.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 the author(s), published by De Gruyter, Berlin/Boston 2024 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c431t-5827540ce551f8816e8793015cdde6fcd776dafd49c9b3f5ab953fa89862ca523</cites><orcidid>0009-0004-1370-9462 ; 0000-0002-3033-0452 ; 0000-0002-8588-9886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501073/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3106621915?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,67030,68814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39634952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Danieli, Carlo</creatorcontrib><creatorcontrib>Andreanov, Alexei</creatorcontrib><creatorcontrib>Leykam, Daniel</creatorcontrib><creatorcontrib>Flach, Sergej</creatorcontrib><title>Flat band fine-tuning and its photonic applications</title><title>Nanophotonics (Berlin, Germany)</title><addtitle>Nanophotonics</addtitle><description>Flat bands – single-particle energy bands – in tight-binding lattices, aka networks, have attracted attention due to the presence of macroscopic degeneracies and their sensitivity to perturbations. They support compact localized eigenstates protected by destructive interference. This makes them natural candidates for emerging exotic phases and unconventional orders. In this review we consider the recently proposed systematic ways to construct flat band networks based on symmetries or fine-tuning. We then discuss how the construction methods can be further extended, adapted or exploited in presence of perturbations, both single-particle and many-body. This strategy has lead to the discovery of non-perturbative metal-insulator transitions, fractal phases, nonlinear and quantum caging and many-body nonergodic quantum models. We discuss what implications these results may have for the design of fine-tuned nanophotonic systems including photonic crystals, nanocavities, and metasurfaces.</description><subject>compact localized states</subject><subject>Eigenvectors</subject><subject>Energy bands</subject><subject>fine-tuning</subject><subject>flat band</subject><subject>Fractal models</subject><subject>Graphene</subject><subject>Insulators</subject><subject>Lasers</subject><subject>Light</subject><subject>localization of light</subject><subject>Metal-insulator transition</subject><subject>nonlinear regime</subject><subject>Particle energy</subject><subject>Perturbation</subject><subject>Photonic crystals</subject><subject>photonic lattices</subject><subject>Physics</subject><subject>Review</subject><subject>Science programs</subject><subject>Superconductivity</subject><subject>Theoretical physics</subject><issn>2192-8614</issn><issn>2192-8606</issn><issn>2192-8614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUtv1DAURiMEolXpnhWKxIZNwNevxCtAFYVKldjA2rpxnBmPMnawHar-exxSSouEN36de_z4quolkLcgQLzz6MO8byihvCHAxJPqlIKiTSeBP30wPqnOUzqQ0pRioOTz6oQpybgS9LRilxPmukc_1KPztsmLd35Xr3OXUz3vQw7emRrneXIGsws-vaiejTgle37Xn1XfLz99u_jSXH_9fHXx8boxnEFuREdbwYmxQsDYdSBt1ypGQJhhsHI0Q9vKAceBK6N6NgrslWAjdqqT1KCg7Ky62rxDwIOeoztivNUBnf69EOJOY8zOTFb3nKA15aC-N5wj7RUh2Lb9SCwFKlfX-801L_3RDsb6HHF6JH28491e78JPDSAIkJYVw5s7Qww_FpuyPrpk7DSht2FJmgGXgpJWQUFf_4MewhJ9-atCESlLNCAKRTbKxJBStOP9bYDoNWG9JazXhPWacCl59fAV9wV_8izAhw24wSnbONhdXG7L4O8F_ucGRoEpKtgv_d-2kA</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Danieli, Carlo</creator><creator>Andreanov, Alexei</creator><creator>Leykam, Daniel</creator><creator>Flach, Sergej</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-1370-9462</orcidid><orcidid>https://orcid.org/0000-0002-3033-0452</orcidid><orcidid>https://orcid.org/0000-0002-8588-9886</orcidid></search><sort><creationdate>20240920</creationdate><title>Flat band fine-tuning and its photonic applications</title><author>Danieli, Carlo ; Andreanov, Alexei ; Leykam, Daniel ; Flach, Sergej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-5827540ce551f8816e8793015cdde6fcd776dafd49c9b3f5ab953fa89862ca523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>compact localized states</topic><topic>Eigenvectors</topic><topic>Energy bands</topic><topic>fine-tuning</topic><topic>flat band</topic><topic>Fractal models</topic><topic>Graphene</topic><topic>Insulators</topic><topic>Lasers</topic><topic>Light</topic><topic>localization of light</topic><topic>Metal-insulator transition</topic><topic>nonlinear regime</topic><topic>Particle energy</topic><topic>Perturbation</topic><topic>Photonic crystals</topic><topic>photonic lattices</topic><topic>Physics</topic><topic>Review</topic><topic>Science programs</topic><topic>Superconductivity</topic><topic>Theoretical physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danieli, Carlo</creatorcontrib><creatorcontrib>Andreanov, Alexei</creatorcontrib><creatorcontrib>Leykam, Daniel</creatorcontrib><creatorcontrib>Flach, Sergej</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nanophotonics (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danieli, Carlo</au><au>Andreanov, Alexei</au><au>Leykam, Daniel</au><au>Flach, Sergej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flat band fine-tuning and its photonic applications</atitle><jtitle>Nanophotonics (Berlin, Germany)</jtitle><addtitle>Nanophotonics</addtitle><date>2024-09-20</date><risdate>2024</risdate><volume>13</volume><issue>21</issue><spage>3925</spage><epage>3944</epage><pages>3925-3944</pages><issn>2192-8614</issn><issn>2192-8606</issn><eissn>2192-8614</eissn><abstract>Flat bands – single-particle energy bands – in tight-binding lattices, aka networks, have attracted attention due to the presence of macroscopic degeneracies and their sensitivity to perturbations. They support compact localized eigenstates protected by destructive interference. This makes them natural candidates for emerging exotic phases and unconventional orders. In this review we consider the recently proposed systematic ways to construct flat band networks based on symmetries or fine-tuning. We then discuss how the construction methods can be further extended, adapted or exploited in presence of perturbations, both single-particle and many-body. This strategy has lead to the discovery of non-perturbative metal-insulator transitions, fractal phases, nonlinear and quantum caging and many-body nonergodic quantum models. We discuss what implications these results may have for the design of fine-tuned nanophotonic systems including photonic crystals, nanocavities, and metasurfaces.</abstract><cop>Germany</cop><pub>De Gruyter</pub><pmid>39634952</pmid><doi>10.1515/nanoph-2024-0135</doi><tpages>20</tpages><orcidid>https://orcid.org/0009-0004-1370-9462</orcidid><orcidid>https://orcid.org/0000-0002-3033-0452</orcidid><orcidid>https://orcid.org/0000-0002-8588-9886</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-8614 |
ispartof | Nanophotonics (Berlin, Germany), 2024-09, Vol.13 (21), p.3925-3944 |
issn | 2192-8614 2192-8606 2192-8614 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b40aec551bbc44a2b900a77bf0e21262 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); De Gruyter Journals - Open Access |
subjects | compact localized states Eigenvectors Energy bands fine-tuning flat band Fractal models Graphene Insulators Lasers Light localization of light Metal-insulator transition nonlinear regime Particle energy Perturbation Photonic crystals photonic lattices Physics Review Science programs Superconductivity Theoretical physics |
title | Flat band fine-tuning and its photonic applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flat%20band%20fine-tuning%20and%20its%20photonic%20applications&rft.jtitle=Nanophotonics%20(Berlin,%20Germany)&rft.au=Danieli,%20Carlo&rft.date=2024-09-20&rft.volume=13&rft.issue=21&rft.spage=3925&rft.epage=3944&rft.pages=3925-3944&rft.issn=2192-8614&rft.eissn=2192-8614&rft_id=info:doi/10.1515/nanoph-2024-0135&rft_dat=%3Cproquest_doaj_%3E3106621915%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-5827540ce551f8816e8793015cdde6fcd776dafd49c9b3f5ab953fa89862ca523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106621915&rft_id=info:pmid/39634952&rfr_iscdi=true |