Loading…

An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments

A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a bi...

Full description

Saved in:
Bibliographic Details
Published in:Axioms 2021-06, Vol.10 (2), p.79
Main Authors: Aggarwal, Ankush, Lombardi, Damiano, Pant, Sanjay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3
cites cdi_FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3
container_end_page
container_issue 2
container_start_page 79
container_title Axioms
container_volume 10
creator Aggarwal, Ankush
Lombardi, Damiano
Pant, Sanjay
description A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive model parameters. The proposed framework considers the information gain about the parameters from the experiment as the key criterion to be maximised, which can be directly used for optimal design. Information gain is computed through k-nearest neighbour algorithms applied to the joint samples of the parameters and measurements produced by the forward and observation models. For biaxial experiments, the results show that low angles have a relatively low information content compared to high angles. The results also show that a smaller number of angles with suitably chosen combinations can result in higher information gains when compared to a larger number of angles which are poorly combined. Finally, it is shown that the proposed framework is consistent with classical approaches, particularly D-optimal design.
doi_str_mv 10.3390/axioms10020079
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b40e60dd1e7d45ed85e320e9e4b3e738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b40e60dd1e7d45ed85e320e9e4b3e738</doaj_id><sourcerecordid>2544464333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3</originalsourceid><addsrcrecordid>eNpVkU1v2zAMQI1hA1ZkvfYsYKcd3FJflr1b1qVrgAAtsPQsyDaVKrOtTFK29if0X09phqLlhQT18CSRRXFG4ZzzBi7Mg_NjpAAMQDXvihMGSpa0quH9q_pjcRrjFnI0lNeUnxRP84ksJ-vDaJLzU7m-Rx8wuY5cBTPiXx9-kXxKbnbJjWYg3zG6zfSVzCczPEYXibfkNvjkOz_EZ3IRD2Ry04b89DaRtYtxj-TWHHwJQyRuIt9cfnDWLR52GNyIU4qfig_WDBFP_-dZcXe1WF9el6ubH8vL-arsBKhUVgxbkNZKUzGDnZISoFW2bTuksmK0Ad5SxhRgz6VVQvEm_7xCyhqhoLZ8ViyP3t6brd7l20141N44_dzwYaNNyAMYULcCsIK-p6h6IbGvJXIG2KBoOSpeZ9eXo-veDG9U1_OVPvSA01pRCn9oZj8f2V3wv_cYk976fchjjJpJIUQleI5ZcX6kuuBjDGhftBT0YdP67ab5P0q6nLE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544464333</pqid></control><display><type>article</type><title>An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments</title><source>Publicly Available Content Database</source><creator>Aggarwal, Ankush ; Lombardi, Damiano ; Pant, Sanjay</creator><creatorcontrib>Aggarwal, Ankush ; Lombardi, Damiano ; Pant, Sanjay</creatorcontrib><description>A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive model parameters. The proposed framework considers the information gain about the parameters from the experiment as the key criterion to be maximised, which can be directly used for optimal design. Information gain is computed through k-nearest neighbour algorithms applied to the joint samples of the parameters and measurements produced by the forward and observation models. For biaxial experiments, the results show that low angles have a relatively low information content compared to high angles. The results also show that a smaller number of angles with suitably chosen combinations can result in higher information gains when compared to a larger number of angles which are poorly combined. Finally, it is shown that the proposed framework is consistent with classical approaches, particularly D-optimal design.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms10020079</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; biaxial experiment ; Biomechanics ; Computer Science ; Constitutive models ; Design optimization ; Experiments ; Information theory ; inverse problems ; Lagrange multiplier ; Mathematical models ; Measurement techniques ; Modeling and Simulation ; mutual information ; optimal design ; Parameter estimation ; Protocol ; soft tissue mechanics ; Soft tissues</subject><ispartof>Axioms, 2021-06, Vol.10 (2), p.79</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3</citedby><cites>FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3</cites><orcidid>0000-0002-1755-8807 ; 0000-0002-2081-308X ; 0000-0002-5001-924X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544464333/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544464333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03187110$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aggarwal, Ankush</creatorcontrib><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Pant, Sanjay</creatorcontrib><title>An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments</title><title>Axioms</title><description>A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive model parameters. The proposed framework considers the information gain about the parameters from the experiment as the key criterion to be maximised, which can be directly used for optimal design. Information gain is computed through k-nearest neighbour algorithms applied to the joint samples of the parameters and measurements produced by the forward and observation models. For biaxial experiments, the results show that low angles have a relatively low information content compared to high angles. The results also show that a smaller number of angles with suitably chosen combinations can result in higher information gains when compared to a larger number of angles which are poorly combined. Finally, it is shown that the proposed framework is consistent with classical approaches, particularly D-optimal design.</description><subject>Algorithms</subject><subject>biaxial experiment</subject><subject>Biomechanics</subject><subject>Computer Science</subject><subject>Constitutive models</subject><subject>Design optimization</subject><subject>Experiments</subject><subject>Information theory</subject><subject>inverse problems</subject><subject>Lagrange multiplier</subject><subject>Mathematical models</subject><subject>Measurement techniques</subject><subject>Modeling and Simulation</subject><subject>mutual information</subject><subject>optimal design</subject><subject>Parameter estimation</subject><subject>Protocol</subject><subject>soft tissue mechanics</subject><subject>Soft tissues</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1v2zAMQI1hA1ZkvfYsYKcd3FJflr1b1qVrgAAtsPQsyDaVKrOtTFK29if0X09phqLlhQT18CSRRXFG4ZzzBi7Mg_NjpAAMQDXvihMGSpa0quH9q_pjcRrjFnI0lNeUnxRP84ksJ-vDaJLzU7m-Rx8wuY5cBTPiXx9-kXxKbnbJjWYg3zG6zfSVzCczPEYXibfkNvjkOz_EZ3IRD2Ry04b89DaRtYtxj-TWHHwJQyRuIt9cfnDWLR52GNyIU4qfig_WDBFP_-dZcXe1WF9el6ubH8vL-arsBKhUVgxbkNZKUzGDnZISoFW2bTuksmK0Ad5SxhRgz6VVQvEm_7xCyhqhoLZ8ViyP3t6brd7l20141N44_dzwYaNNyAMYULcCsIK-p6h6IbGvJXIG2KBoOSpeZ9eXo-veDG9U1_OVPvSA01pRCn9oZj8f2V3wv_cYk976fchjjJpJIUQleI5ZcX6kuuBjDGhftBT0YdP67ab5P0q6nLE</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Aggarwal, Ankush</creator><creator>Lombardi, Damiano</creator><creator>Pant, Sanjay</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1755-8807</orcidid><orcidid>https://orcid.org/0000-0002-2081-308X</orcidid><orcidid>https://orcid.org/0000-0002-5001-924X</orcidid></search><sort><creationdate>20210601</creationdate><title>An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments</title><author>Aggarwal, Ankush ; Lombardi, Damiano ; Pant, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>biaxial experiment</topic><topic>Biomechanics</topic><topic>Computer Science</topic><topic>Constitutive models</topic><topic>Design optimization</topic><topic>Experiments</topic><topic>Information theory</topic><topic>inverse problems</topic><topic>Lagrange multiplier</topic><topic>Mathematical models</topic><topic>Measurement techniques</topic><topic>Modeling and Simulation</topic><topic>mutual information</topic><topic>optimal design</topic><topic>Parameter estimation</topic><topic>Protocol</topic><topic>soft tissue mechanics</topic><topic>Soft tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Ankush</creatorcontrib><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Pant, Sanjay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Ankush</au><au>Lombardi, Damiano</au><au>Pant, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments</atitle><jtitle>Axioms</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>10</volume><issue>2</issue><spage>79</spage><pages>79-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive model parameters. The proposed framework considers the information gain about the parameters from the experiment as the key criterion to be maximised, which can be directly used for optimal design. Information gain is computed through k-nearest neighbour algorithms applied to the joint samples of the parameters and measurements produced by the forward and observation models. For biaxial experiments, the results show that low angles have a relatively low information content compared to high angles. The results also show that a smaller number of angles with suitably chosen combinations can result in higher information gains when compared to a larger number of angles which are poorly combined. Finally, it is shown that the proposed framework is consistent with classical approaches, particularly D-optimal design.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms10020079</doi><orcidid>https://orcid.org/0000-0002-1755-8807</orcidid><orcidid>https://orcid.org/0000-0002-2081-308X</orcidid><orcidid>https://orcid.org/0000-0002-5001-924X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1680
ispartof Axioms, 2021-06, Vol.10 (2), p.79
issn 2075-1680
2075-1680
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b40e60dd1e7d45ed85e320e9e4b3e738
source Publicly Available Content Database
subjects Algorithms
biaxial experiment
Biomechanics
Computer Science
Constitutive models
Design optimization
Experiments
Information theory
inverse problems
Lagrange multiplier
Mathematical models
Measurement techniques
Modeling and Simulation
mutual information
optimal design
Parameter estimation
Protocol
soft tissue mechanics
Soft tissues
title An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Information-Theoretic%20Framework%20for%20Optimal%20Design:%20Analysis%20of%20Protocols%20for%20Estimating%20Soft%20Tissue%20Parameters%20in%20Biaxial%20Experiments&rft.jtitle=Axioms&rft.au=Aggarwal,%20Ankush&rft.date=2021-06-01&rft.volume=10&rft.issue=2&rft.spage=79&rft.pages=79-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms10020079&rft_dat=%3Cproquest_doaj_%3E2544464333%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544464333&rft_id=info:pmid/&rfr_iscdi=true