Loading…
An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments
A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a bi...
Saved in:
Published in: | Axioms 2021-06, Vol.10 (2), p.79 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3 |
container_end_page | |
container_issue | 2 |
container_start_page | 79 |
container_title | Axioms |
container_volume | 10 |
creator | Aggarwal, Ankush Lombardi, Damiano Pant, Sanjay |
description | A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive model parameters. The proposed framework considers the information gain about the parameters from the experiment as the key criterion to be maximised, which can be directly used for optimal design. Information gain is computed through k-nearest neighbour algorithms applied to the joint samples of the parameters and measurements produced by the forward and observation models. For biaxial experiments, the results show that low angles have a relatively low information content compared to high angles. The results also show that a smaller number of angles with suitably chosen combinations can result in higher information gains when compared to a larger number of angles which are poorly combined. Finally, it is shown that the proposed framework is consistent with classical approaches, particularly D-optimal design. |
doi_str_mv | 10.3390/axioms10020079 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b40e60dd1e7d45ed85e320e9e4b3e738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b40e60dd1e7d45ed85e320e9e4b3e738</doaj_id><sourcerecordid>2544464333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3</originalsourceid><addsrcrecordid>eNpVkU1v2zAMQI1hA1ZkvfYsYKcd3FJflr1b1qVrgAAtsPQsyDaVKrOtTFK29if0X09phqLlhQT18CSRRXFG4ZzzBi7Mg_NjpAAMQDXvihMGSpa0quH9q_pjcRrjFnI0lNeUnxRP84ksJ-vDaJLzU7m-Rx8wuY5cBTPiXx9-kXxKbnbJjWYg3zG6zfSVzCczPEYXibfkNvjkOz_EZ3IRD2Ry04b89DaRtYtxj-TWHHwJQyRuIt9cfnDWLR52GNyIU4qfig_WDBFP_-dZcXe1WF9el6ubH8vL-arsBKhUVgxbkNZKUzGDnZISoFW2bTuksmK0Ad5SxhRgz6VVQvEm_7xCyhqhoLZ8ViyP3t6brd7l20141N44_dzwYaNNyAMYULcCsIK-p6h6IbGvJXIG2KBoOSpeZ9eXo-veDG9U1_OVPvSA01pRCn9oZj8f2V3wv_cYk976fchjjJpJIUQleI5ZcX6kuuBjDGhftBT0YdP67ab5P0q6nLE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544464333</pqid></control><display><type>article</type><title>An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments</title><source>Publicly Available Content Database</source><creator>Aggarwal, Ankush ; Lombardi, Damiano ; Pant, Sanjay</creator><creatorcontrib>Aggarwal, Ankush ; Lombardi, Damiano ; Pant, Sanjay</creatorcontrib><description>A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive model parameters. The proposed framework considers the information gain about the parameters from the experiment as the key criterion to be maximised, which can be directly used for optimal design. Information gain is computed through k-nearest neighbour algorithms applied to the joint samples of the parameters and measurements produced by the forward and observation models. For biaxial experiments, the results show that low angles have a relatively low information content compared to high angles. The results also show that a smaller number of angles with suitably chosen combinations can result in higher information gains when compared to a larger number of angles which are poorly combined. Finally, it is shown that the proposed framework is consistent with classical approaches, particularly D-optimal design.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms10020079</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; biaxial experiment ; Biomechanics ; Computer Science ; Constitutive models ; Design optimization ; Experiments ; Information theory ; inverse problems ; Lagrange multiplier ; Mathematical models ; Measurement techniques ; Modeling and Simulation ; mutual information ; optimal design ; Parameter estimation ; Protocol ; soft tissue mechanics ; Soft tissues</subject><ispartof>Axioms, 2021-06, Vol.10 (2), p.79</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3</citedby><cites>FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3</cites><orcidid>0000-0002-1755-8807 ; 0000-0002-2081-308X ; 0000-0002-5001-924X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544464333/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544464333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03187110$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aggarwal, Ankush</creatorcontrib><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Pant, Sanjay</creatorcontrib><title>An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments</title><title>Axioms</title><description>A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive model parameters. The proposed framework considers the information gain about the parameters from the experiment as the key criterion to be maximised, which can be directly used for optimal design. Information gain is computed through k-nearest neighbour algorithms applied to the joint samples of the parameters and measurements produced by the forward and observation models. For biaxial experiments, the results show that low angles have a relatively low information content compared to high angles. The results also show that a smaller number of angles with suitably chosen combinations can result in higher information gains when compared to a larger number of angles which are poorly combined. Finally, it is shown that the proposed framework is consistent with classical approaches, particularly D-optimal design.</description><subject>Algorithms</subject><subject>biaxial experiment</subject><subject>Biomechanics</subject><subject>Computer Science</subject><subject>Constitutive models</subject><subject>Design optimization</subject><subject>Experiments</subject><subject>Information theory</subject><subject>inverse problems</subject><subject>Lagrange multiplier</subject><subject>Mathematical models</subject><subject>Measurement techniques</subject><subject>Modeling and Simulation</subject><subject>mutual information</subject><subject>optimal design</subject><subject>Parameter estimation</subject><subject>Protocol</subject><subject>soft tissue mechanics</subject><subject>Soft tissues</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1v2zAMQI1hA1ZkvfYsYKcd3FJflr1b1qVrgAAtsPQsyDaVKrOtTFK29if0X09phqLlhQT18CSRRXFG4ZzzBi7Mg_NjpAAMQDXvihMGSpa0quH9q_pjcRrjFnI0lNeUnxRP84ksJ-vDaJLzU7m-Rx8wuY5cBTPiXx9-kXxKbnbJjWYg3zG6zfSVzCczPEYXibfkNvjkOz_EZ3IRD2Ry04b89DaRtYtxj-TWHHwJQyRuIt9cfnDWLR52GNyIU4qfig_WDBFP_-dZcXe1WF9el6ubH8vL-arsBKhUVgxbkNZKUzGDnZISoFW2bTuksmK0Ad5SxhRgz6VVQvEm_7xCyhqhoLZ8ViyP3t6brd7l20141N44_dzwYaNNyAMYULcCsIK-p6h6IbGvJXIG2KBoOSpeZ9eXo-veDG9U1_OVPvSA01pRCn9oZj8f2V3wv_cYk976fchjjJpJIUQleI5ZcX6kuuBjDGhftBT0YdP67ab5P0q6nLE</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Aggarwal, Ankush</creator><creator>Lombardi, Damiano</creator><creator>Pant, Sanjay</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1755-8807</orcidid><orcidid>https://orcid.org/0000-0002-2081-308X</orcidid><orcidid>https://orcid.org/0000-0002-5001-924X</orcidid></search><sort><creationdate>20210601</creationdate><title>An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments</title><author>Aggarwal, Ankush ; Lombardi, Damiano ; Pant, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>biaxial experiment</topic><topic>Biomechanics</topic><topic>Computer Science</topic><topic>Constitutive models</topic><topic>Design optimization</topic><topic>Experiments</topic><topic>Information theory</topic><topic>inverse problems</topic><topic>Lagrange multiplier</topic><topic>Mathematical models</topic><topic>Measurement techniques</topic><topic>Modeling and Simulation</topic><topic>mutual information</topic><topic>optimal design</topic><topic>Parameter estimation</topic><topic>Protocol</topic><topic>soft tissue mechanics</topic><topic>Soft tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Ankush</creatorcontrib><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Pant, Sanjay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Ankush</au><au>Lombardi, Damiano</au><au>Pant, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments</atitle><jtitle>Axioms</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>10</volume><issue>2</issue><spage>79</spage><pages>79-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive model parameters. The proposed framework considers the information gain about the parameters from the experiment as the key criterion to be maximised, which can be directly used for optimal design. Information gain is computed through k-nearest neighbour algorithms applied to the joint samples of the parameters and measurements produced by the forward and observation models. For biaxial experiments, the results show that low angles have a relatively low information content compared to high angles. The results also show that a smaller number of angles with suitably chosen combinations can result in higher information gains when compared to a larger number of angles which are poorly combined. Finally, it is shown that the proposed framework is consistent with classical approaches, particularly D-optimal design.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms10020079</doi><orcidid>https://orcid.org/0000-0002-1755-8807</orcidid><orcidid>https://orcid.org/0000-0002-2081-308X</orcidid><orcidid>https://orcid.org/0000-0002-5001-924X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1680 |
ispartof | Axioms, 2021-06, Vol.10 (2), p.79 |
issn | 2075-1680 2075-1680 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b40e60dd1e7d45ed85e320e9e4b3e738 |
source | Publicly Available Content Database |
subjects | Algorithms biaxial experiment Biomechanics Computer Science Constitutive models Design optimization Experiments Information theory inverse problems Lagrange multiplier Mathematical models Measurement techniques Modeling and Simulation mutual information optimal design Parameter estimation Protocol soft tissue mechanics Soft tissues |
title | An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Information-Theoretic%20Framework%20for%20Optimal%20Design:%20Analysis%20of%20Protocols%20for%20Estimating%20Soft%20Tissue%20Parameters%20in%20Biaxial%20Experiments&rft.jtitle=Axioms&rft.au=Aggarwal,%20Ankush&rft.date=2021-06-01&rft.volume=10&rft.issue=2&rft.spage=79&rft.pages=79-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms10020079&rft_dat=%3Cproquest_doaj_%3E2544464333%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-62eb05ff5a62aec75500b7fbbce15621903b12270ed35f747391686e1294708f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544464333&rft_id=info:pmid/&rfr_iscdi=true |