Loading…

High-Density Hydrogen Storage in a 2D-Matrix from Graphene Nanoblisters: A Prospective Nanomaterial for Environmentally Friendly Technologies

In this paper, the atomic structure and mechanical stability of a new structural graphene modification—a 2D matrix of nanoscale cells in the form of a few-layer graphene substrate and nanoblister of a graphene monolayer—were studied for the first time. It is shown that such matrices are mechanically...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2018-04, Vol.8 (4), p.161
Main Authors: Slepchenkov, Michael, Barkov, Pavel, Glukhova, Olga
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-cfc24e657b018b5bb98af0be406284a6c20b01a33f89a052fcb788ce6fcd30803
cites cdi_FETCH-LOGICAL-c367t-cfc24e657b018b5bb98af0be406284a6c20b01a33f89a052fcb788ce6fcd30803
container_end_page
container_issue 4
container_start_page 161
container_title Crystals (Basel)
container_volume 8
creator Slepchenkov, Michael
Barkov, Pavel
Glukhova, Olga
description In this paper, the atomic structure and mechanical stability of a new structural graphene modification—a 2D matrix of nanoscale cells in the form of a few-layer graphene substrate and nanoblister of a graphene monolayer—were studied for the first time. It is shown that such matrices are mechanically stable and are promising for environmentally friendly technologies. The calculated local atomic stress fields demonstrate that the atomic framework is not destroyed, even in the presence of defects in the atomic network of graphene nanoblister (Stone-Wales defect, double vacancies defect, ad-dimmer defect, and their combination). However, it was established that the presence of one or more SW defects leads to the appearance of critical stresses. These critical stresses can induce local bond breaking in the atomic network with an increase in temperature or external pressure. It was found that graphene nanoblister can store molecular hydrogen with a maximum density of 6.6 wt % for 1158 m2/g at 77 K under normal pressure.
doi_str_mv 10.3390/cryst8040161
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b4172e04f9454a988846f12d8a1e60e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b4172e04f9454a988846f12d8a1e60e3</doaj_id><sourcerecordid>2582801390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-cfc24e657b018b5bb98af0be406284a6c20b01a33f89a052fcb788ce6fcd30803</originalsourceid><addsrcrecordid>eNpNUctuFDEQHCGQiEJufIAlrgz4NR4PtyivjRQeEuFs9Xjas17N2ovtRJmP4J8xLELpS5e6StWtrqZ5y-gHIQb60aY1F00lZYq9aE447UUrRcdfPsOvm7Ocd7RWr2jfs5Pm18bP2_YSQ_ZlJZt1SnHGQL6XmGBG4gMBwi_bz1CSfyIuxT25SXDYYkDyBUIcF58LpvyJnJNvKeYD2uIfj9weKuNhIS4mchUefYphj6HAsqzkOnkMUwX3aLchLnH2mN80rxwsGc_-9dPmx_XV_cWmvft6c3txftdaofrSWme5RNX1I2V67MZx0ODoiJIqriUoy2llQAinB6Add3bstbaonJ0E1VScNrdH3ynCzhyS30NaTQRv_g5img2k4u2CZpSs50ilG2QnYdBaS-UYnzQwVBRF9Xp39Dqk-PMBczG7-JBCPd_wTnNNWU2nqt4fVbY-KSd0_7cyav7kZ57nJ34D3XKPrQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582801390</pqid></control><display><type>article</type><title>High-Density Hydrogen Storage in a 2D-Matrix from Graphene Nanoblisters: A Prospective Nanomaterial for Environmentally Friendly Technologies</title><source>Publicly Available Content Database</source><creator>Slepchenkov, Michael ; Barkov, Pavel ; Glukhova, Olga</creator><creatorcontrib>Slepchenkov, Michael ; Barkov, Pavel ; Glukhova, Olga</creatorcontrib><description>In this paper, the atomic structure and mechanical stability of a new structural graphene modification—a 2D matrix of nanoscale cells in the form of a few-layer graphene substrate and nanoblister of a graphene monolayer—were studied for the first time. It is shown that such matrices are mechanically stable and are promising for environmentally friendly technologies. The calculated local atomic stress fields demonstrate that the atomic framework is not destroyed, even in the presence of defects in the atomic network of graphene nanoblister (Stone-Wales defect, double vacancies defect, ad-dimmer defect, and their combination). However, it was established that the presence of one or more SW defects leads to the appearance of critical stresses. These critical stresses can induce local bond breaking in the atomic network with an increase in temperature or external pressure. It was found that graphene nanoblister can store molecular hydrogen with a maximum density of 6.6 wt % for 1158 m2/g at 77 K under normal pressure.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst8040161</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>2D matrix ; Adhesives ; Atomic structure ; Bond strength ; Carbon ; Chemical bonds ; Crystal defects ; Defects ; Density ; Energy ; External pressure ; Graphene ; graphene nanoblister ; Hydrogen ; Hydrogen storage ; local stress field ; Mechanical properties ; mechanical stability ; Nanomaterials ; Stress distribution ; Structural stability ; Substrates</subject><ispartof>Crystals (Basel), 2018-04, Vol.8 (4), p.161</ispartof><rights>2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-cfc24e657b018b5bb98af0be406284a6c20b01a33f89a052fcb788ce6fcd30803</citedby><cites>FETCH-LOGICAL-c367t-cfc24e657b018b5bb98af0be406284a6c20b01a33f89a052fcb788ce6fcd30803</cites><orcidid>0000-0002-5670-2058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2582801390/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2582801390?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Slepchenkov, Michael</creatorcontrib><creatorcontrib>Barkov, Pavel</creatorcontrib><creatorcontrib>Glukhova, Olga</creatorcontrib><title>High-Density Hydrogen Storage in a 2D-Matrix from Graphene Nanoblisters: A Prospective Nanomaterial for Environmentally Friendly Technologies</title><title>Crystals (Basel)</title><description>In this paper, the atomic structure and mechanical stability of a new structural graphene modification—a 2D matrix of nanoscale cells in the form of a few-layer graphene substrate and nanoblister of a graphene monolayer—were studied for the first time. It is shown that such matrices are mechanically stable and are promising for environmentally friendly technologies. The calculated local atomic stress fields demonstrate that the atomic framework is not destroyed, even in the presence of defects in the atomic network of graphene nanoblister (Stone-Wales defect, double vacancies defect, ad-dimmer defect, and their combination). However, it was established that the presence of one or more SW defects leads to the appearance of critical stresses. These critical stresses can induce local bond breaking in the atomic network with an increase in temperature or external pressure. It was found that graphene nanoblister can store molecular hydrogen with a maximum density of 6.6 wt % for 1158 m2/g at 77 K under normal pressure.</description><subject>2D matrix</subject><subject>Adhesives</subject><subject>Atomic structure</subject><subject>Bond strength</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Crystal defects</subject><subject>Defects</subject><subject>Density</subject><subject>Energy</subject><subject>External pressure</subject><subject>Graphene</subject><subject>graphene nanoblister</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>local stress field</subject><subject>Mechanical properties</subject><subject>mechanical stability</subject><subject>Nanomaterials</subject><subject>Stress distribution</subject><subject>Structural stability</subject><subject>Substrates</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctuFDEQHCGQiEJufIAlrgz4NR4PtyivjRQeEuFs9Xjas17N2ovtRJmP4J8xLELpS5e6StWtrqZ5y-gHIQb60aY1F00lZYq9aE447UUrRcdfPsOvm7Ocd7RWr2jfs5Pm18bP2_YSQ_ZlJZt1SnHGQL6XmGBG4gMBwi_bz1CSfyIuxT25SXDYYkDyBUIcF58LpvyJnJNvKeYD2uIfj9weKuNhIS4mchUefYphj6HAsqzkOnkMUwX3aLchLnH2mN80rxwsGc_-9dPmx_XV_cWmvft6c3txftdaofrSWme5RNX1I2V67MZx0ODoiJIqriUoy2llQAinB6Add3bstbaonJ0E1VScNrdH3ynCzhyS30NaTQRv_g5img2k4u2CZpSs50ilG2QnYdBaS-UYnzQwVBRF9Xp39Dqk-PMBczG7-JBCPd_wTnNNWU2nqt4fVbY-KSd0_7cyav7kZ57nJ34D3XKPrQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Slepchenkov, Michael</creator><creator>Barkov, Pavel</creator><creator>Glukhova, Olga</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5670-2058</orcidid></search><sort><creationdate>20180401</creationdate><title>High-Density Hydrogen Storage in a 2D-Matrix from Graphene Nanoblisters: A Prospective Nanomaterial for Environmentally Friendly Technologies</title><author>Slepchenkov, Michael ; Barkov, Pavel ; Glukhova, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-cfc24e657b018b5bb98af0be406284a6c20b01a33f89a052fcb788ce6fcd30803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2D matrix</topic><topic>Adhesives</topic><topic>Atomic structure</topic><topic>Bond strength</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Crystal defects</topic><topic>Defects</topic><topic>Density</topic><topic>Energy</topic><topic>External pressure</topic><topic>Graphene</topic><topic>graphene nanoblister</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>local stress field</topic><topic>Mechanical properties</topic><topic>mechanical stability</topic><topic>Nanomaterials</topic><topic>Stress distribution</topic><topic>Structural stability</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slepchenkov, Michael</creatorcontrib><creatorcontrib>Barkov, Pavel</creatorcontrib><creatorcontrib>Glukhova, Olga</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slepchenkov, Michael</au><au>Barkov, Pavel</au><au>Glukhova, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Density Hydrogen Storage in a 2D-Matrix from Graphene Nanoblisters: A Prospective Nanomaterial for Environmentally Friendly Technologies</atitle><jtitle>Crystals (Basel)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>8</volume><issue>4</issue><spage>161</spage><pages>161-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>In this paper, the atomic structure and mechanical stability of a new structural graphene modification—a 2D matrix of nanoscale cells in the form of a few-layer graphene substrate and nanoblister of a graphene monolayer—were studied for the first time. It is shown that such matrices are mechanically stable and are promising for environmentally friendly technologies. The calculated local atomic stress fields demonstrate that the atomic framework is not destroyed, even in the presence of defects in the atomic network of graphene nanoblister (Stone-Wales defect, double vacancies defect, ad-dimmer defect, and their combination). However, it was established that the presence of one or more SW defects leads to the appearance of critical stresses. These critical stresses can induce local bond breaking in the atomic network with an increase in temperature or external pressure. It was found that graphene nanoblister can store molecular hydrogen with a maximum density of 6.6 wt % for 1158 m2/g at 77 K under normal pressure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst8040161</doi><orcidid>https://orcid.org/0000-0002-5670-2058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2018-04, Vol.8 (4), p.161
issn 2073-4352
2073-4352
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b4172e04f9454a988846f12d8a1e60e3
source Publicly Available Content Database
subjects 2D matrix
Adhesives
Atomic structure
Bond strength
Carbon
Chemical bonds
Crystal defects
Defects
Density
Energy
External pressure
Graphene
graphene nanoblister
Hydrogen
Hydrogen storage
local stress field
Mechanical properties
mechanical stability
Nanomaterials
Stress distribution
Structural stability
Substrates
title High-Density Hydrogen Storage in a 2D-Matrix from Graphene Nanoblisters: A Prospective Nanomaterial for Environmentally Friendly Technologies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Density%20Hydrogen%20Storage%20in%20a%202D-Matrix%20from%20Graphene%20Nanoblisters:%20A%20Prospective%20Nanomaterial%20for%20Environmentally%20Friendly%20Technologies&rft.jtitle=Crystals%20(Basel)&rft.au=Slepchenkov,%20Michael&rft.date=2018-04-01&rft.volume=8&rft.issue=4&rft.spage=161&rft.pages=161-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst8040161&rft_dat=%3Cproquest_doaj_%3E2582801390%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-cfc24e657b018b5bb98af0be406284a6c20b01a33f89a052fcb788ce6fcd30803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582801390&rft_id=info:pmid/&rfr_iscdi=true