Loading…

A rock physics modelling algorithm for simulating the elastic parameters of shale using well logging data

As a high-resolution geophysical method employed by the oil and gas industry, well logging can be used to accurately investigate reservoirs. Challenges associated with shale gas reservoir exploration increase the importance of applying elastic parameters or velocity at the logging scale. An efficien...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-08, Vol.8 (1), p.12151-8, Article 12151
Main Authors: Wang, Bing, Chen, Yurong, Lu, Jing, Jin, Wujun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a high-resolution geophysical method employed by the oil and gas industry, well logging can be used to accurately investigate reservoirs. Challenges associated with shale gas reservoir exploration increase the importance of applying elastic parameters or velocity at the logging scale. An efficient shale rock physics model is the foundation for the successful application of this method. We propose a procedure for modelling shale rock physics in which an appropriate modelling method is applied for different compositions of shale rock. The stiffnesses of the kerogen and fluid (oil, gas or water) mixture are obtained with the Kuster-Toksöz model, which assumes that the fluid is included in the kerogen matrix. A self-consistent approximation method is used to model clay, where the clay pores are filled with formation water. The Backus averaging model is then used to simulate the influence of laminated clay and laminated kerogen. Elastic parameter simulations using well logging data show the importance of treating the volume fractions of laminated clay and kerogen carefully. A comparison of the measured compressional slowness and modelled compressional slowness shows the efficiency of the proposed modelling procedure.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-29755-2