Loading…

PacBio single-molecule long-read sequencing shed new light on the complexity of the Carex breviculmis transcriptome

Carex L., a grass genus commonly known as sedges, is distributed worldwide and contributes constructively to turf management, forage production, and ecological conservation. The development of next-generation sequencing (NGS) technologies has considerably improved our understanding of transcriptome...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2019-10, Vol.20 (1), p.789-789, Article 789
Main Authors: Teng, Ke, Teng, Wenjun, Wen, Haifeng, Yue, Yuesen, Guo, Weier, Wu, Juying, Fan, Xifeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carex L., a grass genus commonly known as sedges, is distributed worldwide and contributes constructively to turf management, forage production, and ecological conservation. The development of next-generation sequencing (NGS) technologies has considerably improved our understanding of transcriptome complexity of Carex L. and provided a valuable genetic reference. However, the current transcriptome is not satisfactory mainly because of the enormous difficulty in obtaining full-length transcripts. In this study, we employed PacBio single-molecule long-read sequencing (SMRT) technology for whole-transcriptome profiling in Carex breviculmis. We generated 60,353 high-confidence non-redundant transcripts with an average length of 2302-bp. A total of 3588 alternative splicing events, and 1273 long non-coding RNAs were identified. Furthermore, 40,347 complete coding sequences were predicted, providing an informative reference transcriptome. In addition, the transcriptional regulation mechanism of C. breviculmis in response to shade stress was further explored by mapping the NGS data to the reference transcriptome constructed by SMRT sequencing. This study provided a full-length reference transcriptome of C. breviculmis using the SMRT sequencing method for the first time. The transcriptome atlas obtained will not only facilitate future functional genomics studies but also pave the way for further selective and genic engineering breeding projects for C. breviculmis.
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-019-6163-6