Loading…
Physical Characterization of Palm Fatty Acid Distillate (PFAD) Blends as Biofuel
Palm oil has been accepted to be used as fuel with the introduction of petroleum diesel and Palm Methyl Ester (PME) in 2014. The high cost is the major drawback of PME. Not only PME is derived from an expensive low Free Fatty Acid (FFA) feedstock, the cost to convert FFA to PME through the process o...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Palm oil has been accepted to be used as fuel with the introduction of petroleum diesel and Palm Methyl Ester (PME) in 2014. The high cost is the major drawback of PME. Not only PME is derived from an expensive low Free Fatty Acid (FFA) feedstock, the cost to convert FFA to PME through the process of trans esterification and purification of palm oil fatty acid is also expensive. Alternative feedstock of FFA is palm fatty acid distillate (PFAD). PFAD is a by-product of crude palm oil (CPO) refining. It is inedible and a low price palm oil product making it attractive as a feedstock for biofuel. The high viscosity of PFAD can be reduced by blending it with diesel fuel. Five blends of PFAD and diesel blends with 2%, 4%, 6%, 8% and 10% volumetric ratio were produced in this study. The physical properties of the blends such as density, viscosity, surface tension and flash point were determined and the results were compared to the Malaysian Standard for Diesel Fuel (MS123:2014). The results show that all properties of the blends are within the acceptable value for diesel fuel. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/201713500005 |