Loading…
Integrated Precision High-Frequency Signal Conditioner for Variable Impedance Sensors
In this paper, a signal conditioner intended for use in variable impedance sensors is presented. First, an inductive linear displacement sensor design is described, and the signal conditioner discrete realization is presented. Second, based on this system's requirements, the integrated conditio...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-10, Vol.24 (20), p.6501 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a signal conditioner intended for use in variable impedance sensors is presented. First, an inductive linear displacement sensor design is described, and the signal conditioner discrete realization is presented. Second, based on this system's requirements, the integrated conditioner is proposed. The conditioner comprises an amplifier, a tunable band-pass filter, and a precision high-frequency AC-DC converter. It is designed in a low-cost AMS 0.35 µm CMOS process. The presented conditioner measures the sensor's impedance magnitude by using a simplified variation of the sensor voltage and current vector measurement. It can be used for the real-time measurement of fast sensors, having small output impedance. The post-layout simulation results show that the integrated conditioner has an inductance measurement range from 10 nH to 550 nH with a nonlinearity of 1.2%. The operating frequency in this case was 8 MHz, but the circuit can be easily adjusted to different operating frequencies (due to the tunable filter). The designed IC area is 500 × 330 μm
, and the total power consumption is 93.8 mW. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24206501 |