Loading…

Iris Recognition Using Image Moments and k-Means Algorithm

This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted fro...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-9
Main Authors: Islam, Saeed, Ahmad, Farooq, Khan, Sher Afzal, Khan, Yaser Daanial
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03
cites cdi_FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03
container_end_page 9
container_issue 2014
container_start_page 1
container_title TheScientificWorld
container_volume 2014
creator Islam, Saeed
Ahmad, Farooq
Khan, Sher Afzal
Khan, Yaser Daanial
description This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.
doi_str_mv 10.1155/2014/723595
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b4740e6f9ff54437b15a6cc55fb83a10</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413712767</galeid><doaj_id>oai_doaj_org_article_b4740e6f9ff54437b15a6cc55fb83a10</doaj_id><sourcerecordid>A413712767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7rh68i4NXkTp3VTnq-NBGBY_BnYRxAVvIZ1OejJ2J2vSo_jvzTjrsCMepA6BylNPeEMh9BTwGQBj5w0Gei4awiS7hxbAiKgFpV_uo0Xp8ZoDxSfoUc4bjEkrgD1EJw2VQjQNLNDrVfK5-mRNHIKffQzVdfZhqFaTHmx1FScb5lzp0Fdf6yurQ66W4xCTn9fTY_TA6THbJ7fnKbp-9_bzxYf68uP71cXysjYc47nuO8MAtNTCMN7IzlFqpBMtd31LmlZShzsgpBe4bbnBlArLHfRWgHQtt5icotXe20e9UTfJTzr9VFF79bsR06B0mr0ZreqooLiMS-cYpUR0wDQ3hjHXtUTDzvVm77rZdpPtTUmX9HgkPb4Jfq2G-F0RKRm0rAhe3ApS_La1eVaTz8aOow42brMCRhuMBQNa0Od_oZu4TaF8VaE4JyV9qQM16BLABxfLu2YnVUsKREAjuCjU2T-oUr2dvInBOl_6RwOv9gMmxZyTdYeMgNVubdRubdR-bQr97O63HNg_e1KAl3tg7UOvf_j_s9mCWKfvwAwLQcgvXBLP1Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566383232</pqid></control><display><type>article</type><title>Iris Recognition Using Image Moments and k-Means Algorithm</title><source>PubMed (Medline)</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Islam, Saeed ; Ahmad, Farooq ; Khan, Sher Afzal ; Khan, Yaser Daanial</creator><contributor>Zhao, S. ; Yuan, Y.-B.</contributor><creatorcontrib>Islam, Saeed ; Ahmad, Farooq ; Khan, Sher Afzal ; Khan, Yaser Daanial ; Zhao, S. ; Yuan, Y.-B.</creatorcontrib><description>This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/723595</identifier><identifier>PMID: 24977221</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial Intelligence ; Biometrics ; Biometry - methods ; Classification ; Colleges &amp; universities ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Iridology ; Iris - anatomy &amp; histology ; Methods ; Pattern Recognition, Automated - methods</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-9</ispartof><rights>Copyright © 2014 Yaser Daanial Khan et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Yaser Daanial Khan et al. Yaser Daanial Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Yaser Daanial Khan et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03</citedby><cites>FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1566383232/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1566383232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24977221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhao, S.</contributor><contributor>Yuan, Y.-B.</contributor><creatorcontrib>Islam, Saeed</creatorcontrib><creatorcontrib>Ahmad, Farooq</creatorcontrib><creatorcontrib>Khan, Sher Afzal</creatorcontrib><creatorcontrib>Khan, Yaser Daanial</creatorcontrib><title>Iris Recognition Using Image Moments and k-Means Algorithm</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Classification</subject><subject>Colleges &amp; universities</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Iridology</subject><subject>Iris - anatomy &amp; histology</subject><subject>Methods</subject><subject>Pattern Recognition, Automated - methods</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk2LFDEQhoMo7rh68i4NXkTp3VTnq-NBGBY_BnYRxAVvIZ1OejJ2J2vSo_jvzTjrsCMepA6BylNPeEMh9BTwGQBj5w0Gei4awiS7hxbAiKgFpV_uo0Xp8ZoDxSfoUc4bjEkrgD1EJw2VQjQNLNDrVfK5-mRNHIKffQzVdfZhqFaTHmx1FScb5lzp0Fdf6yurQ66W4xCTn9fTY_TA6THbJ7fnKbp-9_bzxYf68uP71cXysjYc47nuO8MAtNTCMN7IzlFqpBMtd31LmlZShzsgpBe4bbnBlArLHfRWgHQtt5icotXe20e9UTfJTzr9VFF79bsR06B0mr0ZreqooLiMS-cYpUR0wDQ3hjHXtUTDzvVm77rZdpPtTUmX9HgkPb4Jfq2G-F0RKRm0rAhe3ApS_La1eVaTz8aOow42brMCRhuMBQNa0Od_oZu4TaF8VaE4JyV9qQM16BLABxfLu2YnVUsKREAjuCjU2T-oUr2dvInBOl_6RwOv9gMmxZyTdYeMgNVubdRubdR-bQr97O63HNg_e1KAl3tg7UOvf_j_s9mCWKfvwAwLQcgvXBLP1Q</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Islam, Saeed</creator><creator>Ahmad, Farooq</creator><creator>Khan, Sher Afzal</creator><creator>Khan, Yaser Daanial</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Iris Recognition Using Image Moments and k-Means Algorithm</title><author>Islam, Saeed ; Ahmad, Farooq ; Khan, Sher Afzal ; Khan, Yaser Daanial</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Classification</topic><topic>Colleges &amp; universities</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Iridology</topic><topic>Iris - anatomy &amp; histology</topic><topic>Methods</topic><topic>Pattern Recognition, Automated - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Saeed</creatorcontrib><creatorcontrib>Ahmad, Farooq</creatorcontrib><creatorcontrib>Khan, Sher Afzal</creatorcontrib><creatorcontrib>Khan, Yaser Daanial</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Saeed</au><au>Ahmad, Farooq</au><au>Khan, Sher Afzal</au><au>Khan, Yaser Daanial</au><au>Zhao, S.</au><au>Yuan, Y.-B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iris Recognition Using Image Moments and k-Means Algorithm</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>24977221</pmid><doi>10.1155/2014/723595</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2356-6140
ispartof TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-9
issn 2356-6140
1537-744X
1537-744X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b4740e6f9ff54437b15a6cc55fb83a10
source PubMed (Medline); Wiley Online Library Open Access; Publicly Available Content Database
subjects Algorithms
Artificial Intelligence
Biometrics
Biometry - methods
Classification
Colleges & universities
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Iridology
Iris - anatomy & histology
Methods
Pattern Recognition, Automated - methods
title Iris Recognition Using Image Moments and k-Means Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iris%20Recognition%20Using%20Image%20Moments%20and%20k-Means%20Algorithm&rft.jtitle=TheScientificWorld&rft.au=Islam,%20Saeed&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/723595&rft_dat=%3Cgale_doaj_%3EA413712767%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1566383232&rft_id=info:pmid/24977221&rft_galeid=A413712767&rfr_iscdi=true