Loading…
Iris Recognition Using Image Moments and k-Means Algorithm
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted fro...
Saved in:
Published in: | TheScientificWorld 2014-01, Vol.2014 (2014), p.1-9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03 |
---|---|
cites | cdi_FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03 |
container_end_page | 9 |
container_issue | 2014 |
container_start_page | 1 |
container_title | TheScientificWorld |
container_volume | 2014 |
creator | Islam, Saeed Ahmad, Farooq Khan, Sher Afzal Khan, Yaser Daanial |
description | This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%. |
doi_str_mv | 10.1155/2014/723595 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b4740e6f9ff54437b15a6cc55fb83a10</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413712767</galeid><doaj_id>oai_doaj_org_article_b4740e6f9ff54437b15a6cc55fb83a10</doaj_id><sourcerecordid>A413712767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7rh68i4NXkTp3VTnq-NBGBY_BnYRxAVvIZ1OejJ2J2vSo_jvzTjrsCMepA6BylNPeEMh9BTwGQBj5w0Gei4awiS7hxbAiKgFpV_uo0Xp8ZoDxSfoUc4bjEkrgD1EJw2VQjQNLNDrVfK5-mRNHIKffQzVdfZhqFaTHmx1FScb5lzp0Fdf6yurQ66W4xCTn9fTY_TA6THbJ7fnKbp-9_bzxYf68uP71cXysjYc47nuO8MAtNTCMN7IzlFqpBMtd31LmlZShzsgpBe4bbnBlArLHfRWgHQtt5icotXe20e9UTfJTzr9VFF79bsR06B0mr0ZreqooLiMS-cYpUR0wDQ3hjHXtUTDzvVm77rZdpPtTUmX9HgkPb4Jfq2G-F0RKRm0rAhe3ApS_La1eVaTz8aOow42brMCRhuMBQNa0Od_oZu4TaF8VaE4JyV9qQM16BLABxfLu2YnVUsKREAjuCjU2T-oUr2dvInBOl_6RwOv9gMmxZyTdYeMgNVubdRubdR-bQr97O63HNg_e1KAl3tg7UOvf_j_s9mCWKfvwAwLQcgvXBLP1Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566383232</pqid></control><display><type>article</type><title>Iris Recognition Using Image Moments and k-Means Algorithm</title><source>PubMed (Medline)</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Islam, Saeed ; Ahmad, Farooq ; Khan, Sher Afzal ; Khan, Yaser Daanial</creator><contributor>Zhao, S. ; Yuan, Y.-B.</contributor><creatorcontrib>Islam, Saeed ; Ahmad, Farooq ; Khan, Sher Afzal ; Khan, Yaser Daanial ; Zhao, S. ; Yuan, Y.-B.</creatorcontrib><description>This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/723595</identifier><identifier>PMID: 24977221</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial Intelligence ; Biometrics ; Biometry - methods ; Classification ; Colleges & universities ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Iridology ; Iris - anatomy & histology ; Methods ; Pattern Recognition, Automated - methods</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-9</ispartof><rights>Copyright © 2014 Yaser Daanial Khan et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Yaser Daanial Khan et al. Yaser Daanial Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Yaser Daanial Khan et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03</citedby><cites>FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1566383232/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1566383232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24977221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhao, S.</contributor><contributor>Yuan, Y.-B.</contributor><creatorcontrib>Islam, Saeed</creatorcontrib><creatorcontrib>Ahmad, Farooq</creatorcontrib><creatorcontrib>Khan, Sher Afzal</creatorcontrib><creatorcontrib>Khan, Yaser Daanial</creatorcontrib><title>Iris Recognition Using Image Moments and k-Means Algorithm</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Classification</subject><subject>Colleges & universities</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Iridology</subject><subject>Iris - anatomy & histology</subject><subject>Methods</subject><subject>Pattern Recognition, Automated - methods</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk2LFDEQhoMo7rh68i4NXkTp3VTnq-NBGBY_BnYRxAVvIZ1OejJ2J2vSo_jvzTjrsCMepA6BylNPeEMh9BTwGQBj5w0Gei4awiS7hxbAiKgFpV_uo0Xp8ZoDxSfoUc4bjEkrgD1EJw2VQjQNLNDrVfK5-mRNHIKffQzVdfZhqFaTHmx1FScb5lzp0Fdf6yurQ66W4xCTn9fTY_TA6THbJ7fnKbp-9_bzxYf68uP71cXysjYc47nuO8MAtNTCMN7IzlFqpBMtd31LmlZShzsgpBe4bbnBlArLHfRWgHQtt5icotXe20e9UTfJTzr9VFF79bsR06B0mr0ZreqooLiMS-cYpUR0wDQ3hjHXtUTDzvVm77rZdpPtTUmX9HgkPb4Jfq2G-F0RKRm0rAhe3ApS_La1eVaTz8aOow42brMCRhuMBQNa0Od_oZu4TaF8VaE4JyV9qQM16BLABxfLu2YnVUsKREAjuCjU2T-oUr2dvInBOl_6RwOv9gMmxZyTdYeMgNVubdRubdR-bQr97O63HNg_e1KAl3tg7UOvf_j_s9mCWKfvwAwLQcgvXBLP1Q</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Islam, Saeed</creator><creator>Ahmad, Farooq</creator><creator>Khan, Sher Afzal</creator><creator>Khan, Yaser Daanial</creator><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Iris Recognition Using Image Moments and k-Means Algorithm</title><author>Islam, Saeed ; Ahmad, Farooq ; Khan, Sher Afzal ; Khan, Yaser Daanial</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Classification</topic><topic>Colleges & universities</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Iridology</topic><topic>Iris - anatomy & histology</topic><topic>Methods</topic><topic>Pattern Recognition, Automated - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Saeed</creatorcontrib><creatorcontrib>Ahmad, Farooq</creatorcontrib><creatorcontrib>Khan, Sher Afzal</creatorcontrib><creatorcontrib>Khan, Yaser Daanial</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Saeed</au><au>Ahmad, Farooq</au><au>Khan, Sher Afzal</au><au>Khan, Yaser Daanial</au><au>Zhao, S.</au><au>Yuan, Y.-B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iris Recognition Using Image Moments and k-Means Algorithm</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>24977221</pmid><doi>10.1155/2014/723595</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2356-6140 |
ispartof | TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-9 |
issn | 2356-6140 1537-744X 1537-744X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b4740e6f9ff54437b15a6cc55fb83a10 |
source | PubMed (Medline); Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Algorithms Artificial Intelligence Biometrics Biometry - methods Classification Colleges & universities Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Iridology Iris - anatomy & histology Methods Pattern Recognition, Automated - methods |
title | Iris Recognition Using Image Moments and k-Means Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iris%20Recognition%20Using%20Image%20Moments%20and%20k-Means%20Algorithm&rft.jtitle=TheScientificWorld&rft.au=Islam,%20Saeed&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/723595&rft_dat=%3Cgale_doaj_%3EA413712767%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c600t-dbc511a9a7c5629bf44c9f786fd832894f0b133d70886c0447e6f1de719f86e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1566383232&rft_id=info:pmid/24977221&rft_galeid=A413712767&rfr_iscdi=true |