Loading…

Comparison of Feature Vector Compositions to Enhance the Performance of NIRS-BCI-Triggered Robotic Hand Orthosis for Post-Stroke Motor Recovery

Recently, brain–computer interfaces, combined with feedback systems and goal-oriented training, have been investigated for their capacity to promote functional recovery after stroke. Accordingly, we developed a brain–computer interface-triggered robotic hand orthosis that assists hand-closing and ha...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-09, Vol.9 (18), p.3845
Main Authors: Lee, Jongseung, Mukae, Nobutaka, Arata, Jumpei, Iihara, Koji, Hashizume, Makoto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, brain–computer interfaces, combined with feedback systems and goal-oriented training, have been investigated for their capacity to promote functional recovery after stroke. Accordingly, we developed a brain–computer interface-triggered robotic hand orthosis that assists hand-closing and hand-opening for post-stroke patients without sufficient motor output. In this system, near-infrared spectroscopy is used to monitor the affected motor cortex, and a linear discriminant analysis-based binary classifier estimates hand posture. The estimated posture then wirelessly triggers the robotic hand orthosis. For better performance of the brain–computer interface, we tested feature windows of different lengths and varying feature vector compositions with motor execution data from seven neurologically intact participants. The interaction between a feature window and a delay in the hemodynamic response significantly affected both classification accuracy (Matthew Correlation Coefficient) and detection latency. The ‘preserving channels’ feature vector was able to increase accuracy by 13.14% and decrease latency by 29.48%, relative to averaging. Oxyhemoglobin combined with deoxyhemoglobin improved accuracy by 3.71% and decreased latency by 6.01% relative to oxyhemoglobin alone. Thus, the best classification performance resulted in an accuracy of 0.7154 and a latency of 2.8515 s. The hand rehabilitation system was successfully implemented using this feature vector composition, which yielded better classification performance.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9183845