Loading…
Microcolin H, a novel autophagy inducer, exerts potent antitumour activity by targeting PITPα/β
The identification of effective drug targets and the development of bioactive molecules are areas of high need in cancer therapy. The phosphatidylinositol transfer protein alpha/beta isoform (PITPα/β) has been reported to play an essential role in integrating phosphoinositide trafficking and lipid m...
Saved in:
Published in: | Signal transduction and targeted therapy 2023-11, Vol.8 (1), p.428-428, Article 428 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The identification of effective drug targets and the development of bioactive molecules are areas of high need in cancer therapy. The phosphatidylinositol transfer protein alpha/beta isoform (PITPα/β) has been reported to play an essential role in integrating phosphoinositide trafficking and lipid metabolism in diverse cellular processes but remains unexplored as a potential target for cancer treatment. Herein, data analysis of clinical cancer samples revealed that PITPα/β expression is closely correlated with the poor prognosis. Target identification by chemical proteomic methods revealed that microcolin H, a naturally occurring marine lipopeptide, directly binds PITPα/β and displays antiproliferative activity on different types of tumour cell lines. Furthermore, we identified that microcolin H treatment increased the conversion of LC3I to LC3II, accompanied by a reduction of the level of p62 in cancer cells, leading to autophagic cell death. Moreover, microcolin H showed preeminent antitumour efficacy in nude mouse subcutaneous tumour models with low toxicity. Our discoveries revealed that by targeting PITPα/β, microcolin H induced autophagic cell death in tumours with efficient anti-proliferating activity, which sheds light on PITPα/β as a promising therapeutic target for cancer treatment. |
---|---|
ISSN: | 2059-3635 2095-9907 2059-3635 |
DOI: | 10.1038/s41392-023-01667-2 |