Loading…

Experimental study of anisotropic constitutive behavior of β-HMX crystals via nanoindentation and small-scale dynamic impact

For energetic crystals such as HMX, the sensitivity of the material to shock, the possibility of initiation, and the subsequent reaction is known to be controlled by processes occurring at the crystal level. The anisotropic nature of β-HMX can be critical in determining the performance of HMX based...

Full description

Saved in:
Bibliographic Details
Published in:SN applied sciences 2021-12, Vol.3 (12), p.875-11, Article 875
Main Authors: Olokun, Ayotomi, Dillard, Tyler, Dhiman, Abhijeet, Tomar, Vikas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For energetic crystals such as HMX, the sensitivity of the material to shock, the possibility of initiation, and the subsequent reaction is known to be controlled by processes occurring at the crystal level. The anisotropic nature of β-HMX can be critical in determining the performance of HMX based polymer bonded explosives, which are widely used across multiple industries as propellant or explosives. In this work, we experimentally obtain constitutive parameters for characterizing the response of multiple crystalline planes of β-HMX crystals to external loading. Nanoindentation and small-scale dynamic impact experiments were performed on multiple planes of β-HMX crystals to comparatively measure the indentation moduli in multiple orientation directions. Anisotropic material behavior, involving constitutive elastic and non-elastic parameters, was measured and studied. Findings regarding material properties for the (100), (010), (001), {110}, and {011} planes of β-HMX are presented and compared with literature data.
ISSN:2523-3963
2523-3971
DOI:10.1007/s42452-021-04862-4