Loading…
Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats
Although diabetes mellitus (DM) can be treated with islet transplantation, a scarcity of donors limits the utility of this technique. This study investigated whether human mesenchymal stem cells (MSCs) from umbilical cord could be induced efficiently to differentiate into insulin-producing cells. Se...
Saved in:
Published in: | Journal of biomedical science 2012-04, Vol.19 (1), p.47-47, Article 47 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although diabetes mellitus (DM) can be treated with islet transplantation, a scarcity of donors limits the utility of this technique. This study investigated whether human mesenchymal stem cells (MSCs) from umbilical cord could be induced efficiently to differentiate into insulin-producing cells. Secondly, we evaluated the effect of portal vein transplantation of these differentiated cells in the treatment of streptozotocin-induced diabetes in rats.
MSCs from human umbilical cord were induced in three stages to differentiate into insulin-producing cells and evaluated by immunocytochemistry, reverse transcriptase, and real-time PCR, and ELISA. Differentiated cells were transplanted into the liver of diabetic rats using a Port-A catheter via the portal vein. Blood glucose levels were monitored weekly.
Human nuclei and C-peptide were detected in the rat liver by immunohistochemistry. Pancreatic β-cell development-related genes were expressed in the differentiated cells. C-peptide release was increased after glucose challenge in vitro. Furthermore, after transplantation of differentiated cells into the diabetic rats, blood sugar level decreased. Insulin-producing cells containing human C-peptide and human nuclei were located in the liver.
Thus, a Port-A catheter can be used to transplant differentiated insulin-producing cells from human MSCs into the portal vein to alleviate hyperglycemia among diabetic rats. |
---|---|
ISSN: | 1423-0127 1021-7770 1423-0127 |
DOI: | 10.1186/1423-0127-19-47 |