Loading…

Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection

In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Electronics and Telecommunications 2020-01, Vol.66 (1), p.217-223
Main Authors: Wasilewska, Małgorzata, Bogucka, Hanna
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 223
container_issue 1
container_start_page 217
container_title International Journal of Electronics and Telecommunications
container_volume 66
creator Wasilewska, Małgorzata
Bogucka, Hanna
description In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbors and Random Forest show that these methods significantly improves the detection probability.
doi_str_mv 10.24425/ijet.2020.131866
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b4ee47be152e4551b59c8c94c6f521af</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b4ee47be152e4551b59c8c94c6f521af</doaj_id><sourcerecordid>2650295453</sourcerecordid><originalsourceid>FETCH-LOGICAL-d292t-24d92c822342d6341d4ec8044265760efa51b7c7ec1e2cd198705e17cbc2c1e83</originalsourceid><addsrcrecordid>eNotj8FOwzAQRC0EElXpB3CLxDmtvbYT-4hKWyIVcaCcI2ezKY7apDgpUv8ei3Ka0Rye5jH2KPgclAK98C2Nc-DA50IKk2U3bAKS81RYKW9j50akRllxz2bD0HLOhVa5VHrCio-TQ0p3_kjpOtD3mTq8JG8Ov3xHyZZc6Hy3T5o-JMXxFPofqhO1WehNsuoo7C_JC42Eo--7B3bXuMNAs_-css_1ard8Tbfvm2L5vE1rsDCmoGoLaACkgjqTStSK0PCokek849Q4Laocc0JBgLWwJueaRI4VQpyMnLLiyq1715an4I8uXMre-fJv6MO-dGH0eKCyUkQqr0hoIKUjV1s0aBVmjQbhmsh6urKiWVQfxrLtz6GL98t4h4PVSkv5C_PZZy4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650295453</pqid></control><display><type>article</type><title>Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection</title><source>Publicly Available Content Database</source><creator>Wasilewska, Małgorzata ; Bogucka, Hanna</creator><creatorcontrib>Wasilewska, Małgorzata ; Bogucka, Hanna</creatorcontrib><description>In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbors and Random Forest show that these methods significantly improves the detection probability.</description><identifier>ISSN: 2081-8491</identifier><identifier>EISSN: 2300-1933</identifier><identifier>DOI: 10.24425/ijet.2020.131866</identifier><language>eng</language><publisher>Warsaw: Polish Academy of Sciences</publisher><subject>4G mobile communication ; cognitive radio ; Communications systems ; energy detection ; k-nearest neighbors ; lte ; Machine learning ; Radio communications ; random forest ; spectrum sensing</subject><ispartof>International Journal of Electronics and Telecommunications, 2020-01, Vol.66 (1), p.217-223</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2650295453?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Wasilewska, Małgorzata</creatorcontrib><creatorcontrib>Bogucka, Hanna</creatorcontrib><title>Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection</title><title>International Journal of Electronics and Telecommunications</title><description>In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbors and Random Forest show that these methods significantly improves the detection probability.</description><subject>4G mobile communication</subject><subject>cognitive radio</subject><subject>Communications systems</subject><subject>energy detection</subject><subject>k-nearest neighbors</subject><subject>lte</subject><subject>Machine learning</subject><subject>Radio communications</subject><subject>random forest</subject><subject>spectrum sensing</subject><issn>2081-8491</issn><issn>2300-1933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNotj8FOwzAQRC0EElXpB3CLxDmtvbYT-4hKWyIVcaCcI2ezKY7apDgpUv8ei3Ka0Rye5jH2KPgclAK98C2Nc-DA50IKk2U3bAKS81RYKW9j50akRllxz2bD0HLOhVa5VHrCio-TQ0p3_kjpOtD3mTq8JG8Ov3xHyZZc6Hy3T5o-JMXxFPofqhO1WehNsuoo7C_JC42Eo--7B3bXuMNAs_-css_1ard8Tbfvm2L5vE1rsDCmoGoLaACkgjqTStSK0PCokek849Q4Laocc0JBgLWwJueaRI4VQpyMnLLiyq1715an4I8uXMre-fJv6MO-dGH0eKCyUkQqr0hoIKUjV1s0aBVmjQbhmsh6urKiWVQfxrLtz6GL98t4h4PVSkv5C_PZZy4</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wasilewska, Małgorzata</creator><creator>Bogucka, Hanna</creator><general>Polish Academy of Sciences</general><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20200101</creationdate><title>Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection</title><author>Wasilewska, Małgorzata ; Bogucka, Hanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d292t-24d92c822342d6341d4ec8044265760efa51b7c7ec1e2cd198705e17cbc2c1e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4G mobile communication</topic><topic>cognitive radio</topic><topic>Communications systems</topic><topic>energy detection</topic><topic>k-nearest neighbors</topic><topic>lte</topic><topic>Machine learning</topic><topic>Radio communications</topic><topic>random forest</topic><topic>spectrum sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasilewska, Małgorzata</creatorcontrib><creatorcontrib>Bogucka, Hanna</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International Journal of Electronics and Telecommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasilewska, Małgorzata</au><au>Bogucka, Hanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection</atitle><jtitle>International Journal of Electronics and Telecommunications</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>66</volume><issue>1</issue><spage>217</spage><epage>223</epage><pages>217-223</pages><issn>2081-8491</issn><eissn>2300-1933</eissn><abstract>In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbors and Random Forest show that these methods significantly improves the detection probability.</abstract><cop>Warsaw</cop><pub>Polish Academy of Sciences</pub><doi>10.24425/ijet.2020.131866</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2081-8491
ispartof International Journal of Electronics and Telecommunications, 2020-01, Vol.66 (1), p.217-223
issn 2081-8491
2300-1933
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b4ee47be152e4551b59c8c94c6f521af
source Publicly Available Content Database
subjects 4G mobile communication
cognitive radio
Communications systems
energy detection
k-nearest neighbors
lte
Machine learning
Radio communications
random forest
spectrum sensing
title Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-Time-Frequency%20Machine%20Learning%20for%20Improved%204G/5G%20Energy%20Detection&rft.jtitle=International%20Journal%20of%20Electronics%20and%20Telecommunications&rft.au=Wasilewska,%20Ma%C5%82gorzata&rft.date=2020-01-01&rft.volume=66&rft.issue=1&rft.spage=217&rft.epage=223&rft.pages=217-223&rft.issn=2081-8491&rft.eissn=2300-1933&rft_id=info:doi/10.24425/ijet.2020.131866&rft_dat=%3Cproquest_doaj_%3E2650295453%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d292t-24d92c822342d6341d4ec8044265760efa51b7c7ec1e2cd198705e17cbc2c1e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2650295453&rft_id=info:pmid/&rfr_iscdi=true