Loading…
Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection
In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic...
Saved in:
Published in: | International Journal of Electronics and Telecommunications 2020-01, Vol.66 (1), p.217-223 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 223 |
container_issue | 1 |
container_start_page | 217 |
container_title | International Journal of Electronics and Telecommunications |
container_volume | 66 |
creator | Wasilewska, Małgorzata Bogucka, Hanna |
description | In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbors and Random Forest show that these methods significantly improves the detection probability. |
doi_str_mv | 10.24425/ijet.2020.131866 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b4ee47be152e4551b59c8c94c6f521af</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b4ee47be152e4551b59c8c94c6f521af</doaj_id><sourcerecordid>2650295453</sourcerecordid><originalsourceid>FETCH-LOGICAL-d292t-24d92c822342d6341d4ec8044265760efa51b7c7ec1e2cd198705e17cbc2c1e83</originalsourceid><addsrcrecordid>eNotj8FOwzAQRC0EElXpB3CLxDmtvbYT-4hKWyIVcaCcI2ezKY7apDgpUv8ei3Ka0Rye5jH2KPgclAK98C2Nc-DA50IKk2U3bAKS81RYKW9j50akRllxz2bD0HLOhVa5VHrCio-TQ0p3_kjpOtD3mTq8JG8Ov3xHyZZc6Hy3T5o-JMXxFPofqhO1WehNsuoo7C_JC42Eo--7B3bXuMNAs_-css_1ard8Tbfvm2L5vE1rsDCmoGoLaACkgjqTStSK0PCokek849Q4Laocc0JBgLWwJueaRI4VQpyMnLLiyq1715an4I8uXMre-fJv6MO-dGH0eKCyUkQqr0hoIKUjV1s0aBVmjQbhmsh6urKiWVQfxrLtz6GL98t4h4PVSkv5C_PZZy4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650295453</pqid></control><display><type>article</type><title>Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection</title><source>Publicly Available Content Database</source><creator>Wasilewska, Małgorzata ; Bogucka, Hanna</creator><creatorcontrib>Wasilewska, Małgorzata ; Bogucka, Hanna</creatorcontrib><description>In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbors and Random Forest show that these methods significantly improves the detection probability.</description><identifier>ISSN: 2081-8491</identifier><identifier>EISSN: 2300-1933</identifier><identifier>DOI: 10.24425/ijet.2020.131866</identifier><language>eng</language><publisher>Warsaw: Polish Academy of Sciences</publisher><subject>4G mobile communication ; cognitive radio ; Communications systems ; energy detection ; k-nearest neighbors ; lte ; Machine learning ; Radio communications ; random forest ; spectrum sensing</subject><ispartof>International Journal of Electronics and Telecommunications, 2020-01, Vol.66 (1), p.217-223</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2650295453?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Wasilewska, Małgorzata</creatorcontrib><creatorcontrib>Bogucka, Hanna</creatorcontrib><title>Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection</title><title>International Journal of Electronics and Telecommunications</title><description>In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbors and Random Forest show that these methods significantly improves the detection probability.</description><subject>4G mobile communication</subject><subject>cognitive radio</subject><subject>Communications systems</subject><subject>energy detection</subject><subject>k-nearest neighbors</subject><subject>lte</subject><subject>Machine learning</subject><subject>Radio communications</subject><subject>random forest</subject><subject>spectrum sensing</subject><issn>2081-8491</issn><issn>2300-1933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNotj8FOwzAQRC0EElXpB3CLxDmtvbYT-4hKWyIVcaCcI2ezKY7apDgpUv8ei3Ka0Rye5jH2KPgclAK98C2Nc-DA50IKk2U3bAKS81RYKW9j50akRllxz2bD0HLOhVa5VHrCio-TQ0p3_kjpOtD3mTq8JG8Ov3xHyZZc6Hy3T5o-JMXxFPofqhO1WehNsuoo7C_JC42Eo--7B3bXuMNAs_-css_1ard8Tbfvm2L5vE1rsDCmoGoLaACkgjqTStSK0PCokek849Q4Laocc0JBgLWwJueaRI4VQpyMnLLiyq1715an4I8uXMre-fJv6MO-dGH0eKCyUkQqr0hoIKUjV1s0aBVmjQbhmsh6urKiWVQfxrLtz6GL98t4h4PVSkv5C_PZZy4</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wasilewska, Małgorzata</creator><creator>Bogucka, Hanna</creator><general>Polish Academy of Sciences</general><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20200101</creationdate><title>Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection</title><author>Wasilewska, Małgorzata ; Bogucka, Hanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d292t-24d92c822342d6341d4ec8044265760efa51b7c7ec1e2cd198705e17cbc2c1e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4G mobile communication</topic><topic>cognitive radio</topic><topic>Communications systems</topic><topic>energy detection</topic><topic>k-nearest neighbors</topic><topic>lte</topic><topic>Machine learning</topic><topic>Radio communications</topic><topic>random forest</topic><topic>spectrum sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasilewska, Małgorzata</creatorcontrib><creatorcontrib>Bogucka, Hanna</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International Journal of Electronics and Telecommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasilewska, Małgorzata</au><au>Bogucka, Hanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection</atitle><jtitle>International Journal of Electronics and Telecommunications</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>66</volume><issue>1</issue><spage>217</spage><epage>223</epage><pages>217-223</pages><issn>2081-8491</issn><eissn>2300-1933</eissn><abstract>In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbors and Random Forest show that these methods significantly improves the detection probability.</abstract><cop>Warsaw</cop><pub>Polish Academy of Sciences</pub><doi>10.24425/ijet.2020.131866</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2081-8491 |
ispartof | International Journal of Electronics and Telecommunications, 2020-01, Vol.66 (1), p.217-223 |
issn | 2081-8491 2300-1933 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b4ee47be152e4551b59c8c94c6f521af |
source | Publicly Available Content Database |
subjects | 4G mobile communication cognitive radio Communications systems energy detection k-nearest neighbors lte Machine learning Radio communications random forest spectrum sensing |
title | Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-Time-Frequency%20Machine%20Learning%20for%20Improved%204G/5G%20Energy%20Detection&rft.jtitle=International%20Journal%20of%20Electronics%20and%20Telecommunications&rft.au=Wasilewska,%20Ma%C5%82gorzata&rft.date=2020-01-01&rft.volume=66&rft.issue=1&rft.spage=217&rft.epage=223&rft.pages=217-223&rft.issn=2081-8491&rft.eissn=2300-1933&rft_id=info:doi/10.24425/ijet.2020.131866&rft_dat=%3Cproquest_doaj_%3E2650295453%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d292t-24d92c822342d6341d4ec8044265760efa51b7c7ec1e2cd198705e17cbc2c1e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2650295453&rft_id=info:pmid/&rfr_iscdi=true |