Loading…

Research on Deformation Characteristics and Control Technology of Soft Rock Roadway under Dynamic Disturbance

In the mining process of an underground coal mine, the dynamic load often causes great damage to the roadway and affects the normal mining of coal mine. In this paper, the deformation of surrounding rocks under static load and different disturbance intensities is studied by numerical simulation. The...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2021, Vol.2021 (1)
Main Authors: Zang, Chuan-Wei, Chen, Yang, Chen, Miao, Zhu, Hong-Mo, Qu, Chen-Ming, Zhou, Jia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the mining process of an underground coal mine, the dynamic load often causes great damage to the roadway and affects the normal mining of coal mine. In this paper, the deformation of surrounding rocks under static load and different disturbance intensities is studied by numerical simulation. The results show that under the same static load condition, the greater the dynamic load strength is, the more obvious the roadway roof displacement subsidence is. With the increase in dynamic load propagation distance, the amplitude of the dynamic load waveform decreases gradually. Under the same disturbance load intensity, the variation of roadway displacement with different disturbance load frequencies is studied. According to the influence of dynamic load on the deformation of the roadway, a combined support plan of shotcrete anchor net and reinforcement anchor cable is proposed. Finally, the rationality of the optimized support scheme is verified by numerical simulation and field results. The results show that the combined support scheme can effectively increase the strength of the broken soft rock and reduce the deformation of the surrounding rock. At the same time, it releases the expansion energy generated by the mutual compression and deformation of the rock layers, effectively maintaining the long-term stability of the roadway.
ISSN:1070-9622
1875-9203
DOI:10.1155/2021/6625233