Loading…
A powerful adversary model and corresponding OTP time slot allocation scheme in RIS-assisted physical layer key generation
Physical layer key generation (PLKG) is a technique of information-theoretic security to tackle the problem of key distribution between resource-constrained legitimate users and is a promising candidate for the one time pad (OTP) technique. However, in quasi-static, the key rate is greatly limited d...
Saved in:
Published in: | EURASIP journal on wireless communications and networking 2024-07, Vol.2024 (1), p.54-22, Article 54 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Physical layer key generation (PLKG) is a technique of information-theoretic security to tackle the problem of key distribution between resource-constrained legitimate users and is a promising candidate for the one time pad (OTP) technique. However, in quasi-static, the key rate is greatly limited due to low entropy. Reconfigurable intelligent surface (RIS) is introduced to adaptively reconfigure the radio environment. However, how to allocate time slots in the OTP to counter the increasingly powerful adversary model is an urgent problem to be solved. In this paper, we propose a very powerful adversary model and give an attack strategy called eavesdropping channel search, which allows Eve to use its search and eavesdropping capabilities to maximize the probability of successful attacks. Meanwhile, we propose a time slot allocation algorithm in the OTP to ensure the security of the key. Simulations validate that our proposed attack strategy is more powerful than any existing adversary model and our proposed time slot allocation algorithm does not have any security loss. |
---|---|
ISSN: | 1687-1499 1687-1472 1687-1499 |
DOI: | 10.1186/s13638-024-02384-2 |