Loading…

Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users

Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018-01, Vol.6, p.12252-12259
Main Authors: Gottapu, Srinivasa Kiran, Kapileswar, Nellore, Santhi, Palepu Vijaya, Chenchela, Vijay K. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393
cites cdi_FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393
container_end_page 12259
container_issue
container_start_page 12252
container_title IEEE access
container_volume 6
creator Gottapu, Srinivasa Kiran
Kapileswar, Nellore
Santhi, Palepu Vijaya
Chenchela, Vijay K. R.
description Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high throughput will overcome the bottleneck of CRs application limitations to the reporting and browsing applications only. To tackle this emerging throughput limitation issue in the CRs, this paper proposes the online greedy throughput maximization (OGTM) algorithm which overcomes the throughput limitations. OGTM allows the sensing cycle frame to have a variable length according to the assumed decision validity interval. Then, OGTM varies the decision validity interval of secondary users (SUs) based on the primary users (PUs) historical behavior. As a proof of concept, we developed a simulator in order to evaluate the performance of the proposed OGTM technique. The simulation results show that SUs benefit from the limited PU historical behavior learning, which resultantly increases the throughput up to 95% and at the same time decreases the miss detection probability by 50%.
doi_str_mv 10.1109/ACCESS.2018.2812743
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b527f80eaea1414688944559c9061c16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8307052</ieee_id><doaj_id>oai_doaj_org_article_b527f80eaea1414688944559c9061c16</doaj_id><sourcerecordid>2455929326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRUNRf0JeAz625bDbJY128Qb2g9jmkyWybWpuabL39erOuiPMyw_CdMwOnKAYEjwjB6nRc1-ePjyOKiRxRSago2U5xQEmlhoyzavffvF8cp7TEuWRecXFQmBvz4V_8l1_PUR3ma9_6N0APxvmAbqF9D_E5oadFDNv5YrNt0TR15CRLWnDoyqc2RG_NCp3Bwrz5EFFo0H30LyZ-ZhhiOir2GrNKcPzbD4vpxflTfTWc3F1e1-PJ0JZYtkPBBQZiBZdCSWwFWE5nlBqFBbVOgMTclaQsS9OIylUVpoaq3Bw0zhGm2GFx3fu6YJZ607-gg_H6ZxHiXJvYersCPeNUNBKDAUOyZyWlKkvOlVW4IpZU2euk99rE8LqF1Opl2MZ1fl_TDqSK0Y5iPWVjSClC83eVYN1Fo_todBeN_o0mqwa9ygPAn0IyLDCn7BuC3Yko</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455929326</pqid></control><display><type>article</type><title>Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users</title><source>IEEE Open Access Journals</source><creator>Gottapu, Srinivasa Kiran ; Kapileswar, Nellore ; Santhi, Palepu Vijaya ; Chenchela, Vijay K. R.</creator><creatorcontrib>Gottapu, Srinivasa Kiran ; Kapileswar, Nellore ; Santhi, Palepu Vijaya ; Chenchela, Vijay K. R.</creatorcontrib><description>Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high throughput will overcome the bottleneck of CRs application limitations to the reporting and browsing applications only. To tackle this emerging throughput limitation issue in the CRs, this paper proposes the online greedy throughput maximization (OGTM) algorithm which overcomes the throughput limitations. OGTM allows the sensing cycle frame to have a variable length according to the assumed decision validity interval. Then, OGTM varies the decision validity interval of secondary users (SUs) based on the primary users (PUs) historical behavior. As a proof of concept, we developed a simulator in order to evaluate the performance of the proposed OGTM technique. The simulation results show that SUs benefit from the limited PU historical behavior learning, which resultantly increases the throughput up to 95% and at the same time decreases the miss detection probability by 50%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2812743</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Behavior learning ; Browsing ; Cognitive radio ; cognitive radios ; Data communication ; Decision making ; Delays ; Greedy algorithms ; Maximization ; miss detection ; ogtm ; Optimization ; Payloads ; primary users ; Radio spectra ; secondary users ; Sensors ; Spectrum allocation ; Throughput ; throughput limitation</subject><ispartof>IEEE access, 2018-01, Vol.6, p.12252-12259</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393</citedby><cites>FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393</cites><orcidid>0000-0003-3257-6648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8307052$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Gottapu, Srinivasa Kiran</creatorcontrib><creatorcontrib>Kapileswar, Nellore</creatorcontrib><creatorcontrib>Santhi, Palepu Vijaya</creatorcontrib><creatorcontrib>Chenchela, Vijay K. R.</creatorcontrib><title>Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high throughput will overcome the bottleneck of CRs application limitations to the reporting and browsing applications only. To tackle this emerging throughput limitation issue in the CRs, this paper proposes the online greedy throughput maximization (OGTM) algorithm which overcomes the throughput limitations. OGTM allows the sensing cycle frame to have a variable length according to the assumed decision validity interval. Then, OGTM varies the decision validity interval of secondary users (SUs) based on the primary users (PUs) historical behavior. As a proof of concept, we developed a simulator in order to evaluate the performance of the proposed OGTM technique. The simulation results show that SUs benefit from the limited PU historical behavior learning, which resultantly increases the throughput up to 95% and at the same time decreases the miss detection probability by 50%.</description><subject>Behavior learning</subject><subject>Browsing</subject><subject>Cognitive radio</subject><subject>cognitive radios</subject><subject>Data communication</subject><subject>Decision making</subject><subject>Delays</subject><subject>Greedy algorithms</subject><subject>Maximization</subject><subject>miss detection</subject><subject>ogtm</subject><subject>Optimization</subject><subject>Payloads</subject><subject>primary users</subject><subject>Radio spectra</subject><subject>secondary users</subject><subject>Sensors</subject><subject>Spectrum allocation</subject><subject>Throughput</subject><subject>throughput limitation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRUNRf0JeAz625bDbJY128Qb2g9jmkyWybWpuabL39erOuiPMyw_CdMwOnKAYEjwjB6nRc1-ePjyOKiRxRSago2U5xQEmlhoyzavffvF8cp7TEuWRecXFQmBvz4V_8l1_PUR3ma9_6N0APxvmAbqF9D_E5oadFDNv5YrNt0TR15CRLWnDoyqc2RG_NCp3Bwrz5EFFo0H30LyZ-ZhhiOir2GrNKcPzbD4vpxflTfTWc3F1e1-PJ0JZYtkPBBQZiBZdCSWwFWE5nlBqFBbVOgMTclaQsS9OIylUVpoaq3Bw0zhGm2GFx3fu6YJZ607-gg_H6ZxHiXJvYersCPeNUNBKDAUOyZyWlKkvOlVW4IpZU2euk99rE8LqF1Opl2MZ1fl_TDqSK0Y5iPWVjSClC83eVYN1Fo_todBeN_o0mqwa9ygPAn0IyLDCn7BuC3Yko</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Gottapu, Srinivasa Kiran</creator><creator>Kapileswar, Nellore</creator><creator>Santhi, Palepu Vijaya</creator><creator>Chenchela, Vijay K. R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3257-6648</orcidid></search><sort><creationdate>20180101</creationdate><title>Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users</title><author>Gottapu, Srinivasa Kiran ; Kapileswar, Nellore ; Santhi, Palepu Vijaya ; Chenchela, Vijay K. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Behavior learning</topic><topic>Browsing</topic><topic>Cognitive radio</topic><topic>cognitive radios</topic><topic>Data communication</topic><topic>Decision making</topic><topic>Delays</topic><topic>Greedy algorithms</topic><topic>Maximization</topic><topic>miss detection</topic><topic>ogtm</topic><topic>Optimization</topic><topic>Payloads</topic><topic>primary users</topic><topic>Radio spectra</topic><topic>secondary users</topic><topic>Sensors</topic><topic>Spectrum allocation</topic><topic>Throughput</topic><topic>throughput limitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottapu, Srinivasa Kiran</creatorcontrib><creatorcontrib>Kapileswar, Nellore</creatorcontrib><creatorcontrib>Santhi, Palepu Vijaya</creatorcontrib><creatorcontrib>Chenchela, Vijay K. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottapu, Srinivasa Kiran</au><au>Kapileswar, Nellore</au><au>Santhi, Palepu Vijaya</au><au>Chenchela, Vijay K. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>12252</spage><epage>12259</epage><pages>12252-12259</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high throughput will overcome the bottleneck of CRs application limitations to the reporting and browsing applications only. To tackle this emerging throughput limitation issue in the CRs, this paper proposes the online greedy throughput maximization (OGTM) algorithm which overcomes the throughput limitations. OGTM allows the sensing cycle frame to have a variable length according to the assumed decision validity interval. Then, OGTM varies the decision validity interval of secondary users (SUs) based on the primary users (PUs) historical behavior. As a proof of concept, we developed a simulator in order to evaluate the performance of the proposed OGTM technique. The simulation results show that SUs benefit from the limited PU historical behavior learning, which resultantly increases the throughput up to 95% and at the same time decreases the miss detection probability by 50%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2812743</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3257-6648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.12252-12259
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b527f80eaea1414688944559c9061c16
source IEEE Open Access Journals
subjects Behavior learning
Browsing
Cognitive radio
cognitive radios
Data communication
Decision making
Delays
Greedy algorithms
Maximization
miss detection
ogtm
Optimization
Payloads
primary users
Radio spectra
secondary users
Sensors
Spectrum allocation
Throughput
throughput limitation
title Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Cognitive%20Radio%20Networks%20Throughput%20Using%20Limited%20Historical%20Behavior%20of%20Primary%20Users&rft.jtitle=IEEE%20access&rft.au=Gottapu,%20Srinivasa%20Kiran&rft.date=2018-01-01&rft.volume=6&rft.spage=12252&rft.epage=12259&rft.pages=12252-12259&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2812743&rft_dat=%3Cproquest_doaj_%3E2455929326%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455929326&rft_id=info:pmid/&rft_ieee_id=8307052&rfr_iscdi=true