Loading…
Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users
Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high t...
Saved in:
Published in: | IEEE access 2018-01, Vol.6, p.12252-12259 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393 |
container_end_page | 12259 |
container_issue | |
container_start_page | 12252 |
container_title | IEEE access |
container_volume | 6 |
creator | Gottapu, Srinivasa Kiran Kapileswar, Nellore Santhi, Palepu Vijaya Chenchela, Vijay K. R. |
description | Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high throughput will overcome the bottleneck of CRs application limitations to the reporting and browsing applications only. To tackle this emerging throughput limitation issue in the CRs, this paper proposes the online greedy throughput maximization (OGTM) algorithm which overcomes the throughput limitations. OGTM allows the sensing cycle frame to have a variable length according to the assumed decision validity interval. Then, OGTM varies the decision validity interval of secondary users (SUs) based on the primary users (PUs) historical behavior. As a proof of concept, we developed a simulator in order to evaluate the performance of the proposed OGTM technique. The simulation results show that SUs benefit from the limited PU historical behavior learning, which resultantly increases the throughput up to 95% and at the same time decreases the miss detection probability by 50%. |
doi_str_mv | 10.1109/ACCESS.2018.2812743 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b527f80eaea1414688944559c9061c16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8307052</ieee_id><doaj_id>oai_doaj_org_article_b527f80eaea1414688944559c9061c16</doaj_id><sourcerecordid>2455929326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRUNRf0JeAz625bDbJY128Qb2g9jmkyWybWpuabL39erOuiPMyw_CdMwOnKAYEjwjB6nRc1-ePjyOKiRxRSago2U5xQEmlhoyzavffvF8cp7TEuWRecXFQmBvz4V_8l1_PUR3ma9_6N0APxvmAbqF9D_E5oadFDNv5YrNt0TR15CRLWnDoyqc2RG_NCp3Bwrz5EFFo0H30LyZ-ZhhiOir2GrNKcPzbD4vpxflTfTWc3F1e1-PJ0JZYtkPBBQZiBZdCSWwFWE5nlBqFBbVOgMTclaQsS9OIylUVpoaq3Bw0zhGm2GFx3fu6YJZ607-gg_H6ZxHiXJvYersCPeNUNBKDAUOyZyWlKkvOlVW4IpZU2euk99rE8LqF1Opl2MZ1fl_TDqSK0Y5iPWVjSClC83eVYN1Fo_todBeN_o0mqwa9ygPAn0IyLDCn7BuC3Yko</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455929326</pqid></control><display><type>article</type><title>Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users</title><source>IEEE Open Access Journals</source><creator>Gottapu, Srinivasa Kiran ; Kapileswar, Nellore ; Santhi, Palepu Vijaya ; Chenchela, Vijay K. R.</creator><creatorcontrib>Gottapu, Srinivasa Kiran ; Kapileswar, Nellore ; Santhi, Palepu Vijaya ; Chenchela, Vijay K. R.</creatorcontrib><description>Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high throughput will overcome the bottleneck of CRs application limitations to the reporting and browsing applications only. To tackle this emerging throughput limitation issue in the CRs, this paper proposes the online greedy throughput maximization (OGTM) algorithm which overcomes the throughput limitations. OGTM allows the sensing cycle frame to have a variable length according to the assumed decision validity interval. Then, OGTM varies the decision validity interval of secondary users (SUs) based on the primary users (PUs) historical behavior. As a proof of concept, we developed a simulator in order to evaluate the performance of the proposed OGTM technique. The simulation results show that SUs benefit from the limited PU historical behavior learning, which resultantly increases the throughput up to 95% and at the same time decreases the miss detection probability by 50%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2812743</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Behavior learning ; Browsing ; Cognitive radio ; cognitive radios ; Data communication ; Decision making ; Delays ; Greedy algorithms ; Maximization ; miss detection ; ogtm ; Optimization ; Payloads ; primary users ; Radio spectra ; secondary users ; Sensors ; Spectrum allocation ; Throughput ; throughput limitation</subject><ispartof>IEEE access, 2018-01, Vol.6, p.12252-12259</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393</citedby><cites>FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393</cites><orcidid>0000-0003-3257-6648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8307052$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Gottapu, Srinivasa Kiran</creatorcontrib><creatorcontrib>Kapileswar, Nellore</creatorcontrib><creatorcontrib>Santhi, Palepu Vijaya</creatorcontrib><creatorcontrib>Chenchela, Vijay K. R.</creatorcontrib><title>Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high throughput will overcome the bottleneck of CRs application limitations to the reporting and browsing applications only. To tackle this emerging throughput limitation issue in the CRs, this paper proposes the online greedy throughput maximization (OGTM) algorithm which overcomes the throughput limitations. OGTM allows the sensing cycle frame to have a variable length according to the assumed decision validity interval. Then, OGTM varies the decision validity interval of secondary users (SUs) based on the primary users (PUs) historical behavior. As a proof of concept, we developed a simulator in order to evaluate the performance of the proposed OGTM technique. The simulation results show that SUs benefit from the limited PU historical behavior learning, which resultantly increases the throughput up to 95% and at the same time decreases the miss detection probability by 50%.</description><subject>Behavior learning</subject><subject>Browsing</subject><subject>Cognitive radio</subject><subject>cognitive radios</subject><subject>Data communication</subject><subject>Decision making</subject><subject>Delays</subject><subject>Greedy algorithms</subject><subject>Maximization</subject><subject>miss detection</subject><subject>ogtm</subject><subject>Optimization</subject><subject>Payloads</subject><subject>primary users</subject><subject>Radio spectra</subject><subject>secondary users</subject><subject>Sensors</subject><subject>Spectrum allocation</subject><subject>Throughput</subject><subject>throughput limitation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRUNRf0JeAz625bDbJY128Qb2g9jmkyWybWpuabL39erOuiPMyw_CdMwOnKAYEjwjB6nRc1-ePjyOKiRxRSago2U5xQEmlhoyzavffvF8cp7TEuWRecXFQmBvz4V_8l1_PUR3ma9_6N0APxvmAbqF9D_E5oadFDNv5YrNt0TR15CRLWnDoyqc2RG_NCp3Bwrz5EFFo0H30LyZ-ZhhiOir2GrNKcPzbD4vpxflTfTWc3F1e1-PJ0JZYtkPBBQZiBZdCSWwFWE5nlBqFBbVOgMTclaQsS9OIylUVpoaq3Bw0zhGm2GFx3fu6YJZ607-gg_H6ZxHiXJvYersCPeNUNBKDAUOyZyWlKkvOlVW4IpZU2euk99rE8LqF1Opl2MZ1fl_TDqSK0Y5iPWVjSClC83eVYN1Fo_todBeN_o0mqwa9ygPAn0IyLDCn7BuC3Yko</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Gottapu, Srinivasa Kiran</creator><creator>Kapileswar, Nellore</creator><creator>Santhi, Palepu Vijaya</creator><creator>Chenchela, Vijay K. R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3257-6648</orcidid></search><sort><creationdate>20180101</creationdate><title>Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users</title><author>Gottapu, Srinivasa Kiran ; Kapileswar, Nellore ; Santhi, Palepu Vijaya ; Chenchela, Vijay K. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Behavior learning</topic><topic>Browsing</topic><topic>Cognitive radio</topic><topic>cognitive radios</topic><topic>Data communication</topic><topic>Decision making</topic><topic>Delays</topic><topic>Greedy algorithms</topic><topic>Maximization</topic><topic>miss detection</topic><topic>ogtm</topic><topic>Optimization</topic><topic>Payloads</topic><topic>primary users</topic><topic>Radio spectra</topic><topic>secondary users</topic><topic>Sensors</topic><topic>Spectrum allocation</topic><topic>Throughput</topic><topic>throughput limitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottapu, Srinivasa Kiran</creatorcontrib><creatorcontrib>Kapileswar, Nellore</creatorcontrib><creatorcontrib>Santhi, Palepu Vijaya</creatorcontrib><creatorcontrib>Chenchela, Vijay K. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottapu, Srinivasa Kiran</au><au>Kapileswar, Nellore</au><au>Santhi, Palepu Vijaya</au><au>Chenchela, Vijay K. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>12252</spage><epage>12259</epage><pages>12252-12259</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high throughput will overcome the bottleneck of CRs application limitations to the reporting and browsing applications only. To tackle this emerging throughput limitation issue in the CRs, this paper proposes the online greedy throughput maximization (OGTM) algorithm which overcomes the throughput limitations. OGTM allows the sensing cycle frame to have a variable length according to the assumed decision validity interval. Then, OGTM varies the decision validity interval of secondary users (SUs) based on the primary users (PUs) historical behavior. As a proof of concept, we developed a simulator in order to evaluate the performance of the proposed OGTM technique. The simulation results show that SUs benefit from the limited PU historical behavior learning, which resultantly increases the throughput up to 95% and at the same time decreases the miss detection probability by 50%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2812743</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3257-6648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.12252-12259 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b527f80eaea1414688944559c9061c16 |
source | IEEE Open Access Journals |
subjects | Behavior learning Browsing Cognitive radio cognitive radios Data communication Decision making Delays Greedy algorithms Maximization miss detection ogtm Optimization Payloads primary users Radio spectra secondary users Sensors Spectrum allocation Throughput throughput limitation |
title | Maximizing Cognitive Radio Networks Throughput Using Limited Historical Behavior of Primary Users |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Cognitive%20Radio%20Networks%20Throughput%20Using%20Limited%20Historical%20Behavior%20of%20Primary%20Users&rft.jtitle=IEEE%20access&rft.au=Gottapu,%20Srinivasa%20Kiran&rft.date=2018-01-01&rft.volume=6&rft.spage=12252&rft.epage=12259&rft.pages=12252-12259&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2812743&rft_dat=%3Cproquest_doaj_%3E2455929326%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7570e1c7587980c7ec52b22a9072cd7e805d41444af76d6602a29660defdd1393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455929326&rft_id=info:pmid/&rft_ieee_id=8307052&rfr_iscdi=true |