Loading…
Integrating plasma cell‐free DNA with clinical laboratory results enhances the prediction of critically ill patients with COVID‐19 at hospital admission
Dear Editor, Owing to the substantial clinical heterogeneity of patients infected with SARS-CoV-2,1,2 factors primarily relying upon clinical and/or laboratory parameters are yet inadequate to accurately predict COVID-19 patients evolving to severe or critical illness at early stage.3,4 Recent studi...
Saved in:
Published in: | Clinical and translational medicine 2022-07, Vol.12 (7), p.e966-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4786-c8c06785e1e4c28d3a67b4c82dd7ffe4b0f49f1dd7d8fd56c7f376a081c8c4c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c4786-c8c06785e1e4c28d3a67b4c82dd7ffe4b0f49f1dd7d8fd56c7f376a081c8c4c43 |
container_end_page | n/a |
container_issue | 7 |
container_start_page | e966 |
container_title | Clinical and translational medicine |
container_volume | 12 |
creator | Bai, Yong Zheng, Fang Zhang, Tongda Luo, Qiuhong Luo, Yuxue Zhou, Ruilong Jin, Yan Shan, Ying Cheng, Jiehui Yang, Zhimin Li, Lingguo Zhang, Haiqiang Zhang, Yan Yin, Jianhua Fang, Mingyan Chen, Dongsheng Cheng, Fanjun Jin, Xin |
description | Dear Editor, Owing to the substantial clinical heterogeneity of patients infected with SARS-CoV-2,1,2 factors primarily relying upon clinical and/or laboratory parameters are yet inadequate to accurately predict COVID-19 patients evolving to severe or critical illness at early stage.3,4 Recent studies have revealed an elevated level of cell-free DNA (cfDNA) in plasma in severe COVID-19 patients due to massive cell death or irreversible multiorgan injuries during pathological conditions.5,6 Therefore, the utilization of cfDNA profiling may benefit improving the COVID-19 prediction and help understand molecular characteristics of the life-threatening disease.7,8 Herein, we developed an M2Model, a LightGBM-based9 machine learning model with focal loss as an objective function to predict critical COVID-19 at admission by jointly analysing multimodal data, including laboratory parameters and cfDNA profiles. [...]the M2Model outperformed other single-type feature-based models in discriminating critical from noncritical COVID-19, achieving the highest AUROC (area under ROC curve) of .955 ± .029 (mean ± SD; Figure 1D) and AUPR (area under precision-recall curve) of .827 ± .153 (p < .0001; Figure 1E). Decision curve analysis and confusion matrix also demonstrated the superior prediction ability of the M2Model over other models (Figures 1G,H and S3A–D), with sensitivity of 85.19% (95% confidence interval [CI], 63.6%–100.0%), specificity of 93.33% (95% CI, 86.2%–98.6%), PPV (positive predictive value) of 66.67% (95% CI, 48.8%–88.9%), NPV (negative predictive value) of 97.58% (95% CI, 94.0%–100.0%) and MCC (Matthews correlation coefficient) of 71.02% (95% CI, 49.8%–88.8%) (Table S4). |
doi_str_mv | 10.1002/ctm2.966 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b52de5dbc145462e815554622113994e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b52de5dbc145462e815554622113994e</doaj_id><sourcerecordid>2760827253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4786-c8c06785e1e4c28d3a67b4c82dd7ffe4b0f49f1dd7d8fd56c7f376a081c8c4c43</originalsourceid><addsrcrecordid>eNp1kk1uEzEUgEcIRKtSiSNYYsMmxfZ4PPYGqUqhRCp0U9haHvtN4sgZD7bTKjuOwAF6Ok6CJ4kQRcIb_33ve_55VfWa4AuCMX1n8oZeSM6fVacUYzIjNeXP_xqfVOcprXFpgknZ0pfVSd2IWta0Pa0eF0OGZdTZDUs0ep02Ghnw_tePn30EQFdfLtGDyytkvBuc0R553YXCh7hDEdLW54RgWOnBQEJ5BWiMYJ3JLgwo9MhEl6cwv0POezSWRDCUkL1zfvttcVUyEYl0RquQRpdLBm03LqUieFW96LVPcH7sz6qvHz_czT_Nbm6vF_PLm5lhreAzIwzmrWiAADNU2FrztmNGUGvbvgfW4Z7JnpSZFb1tuGn7uuUaC1IimWH1WbU4eG3QazVGt9Fxp4J2ar8Q4lLpWK7hQXUNtdDYzhDWME5BkKaZBpSQWkoGxfX-4Bq33QasKbeN2j-RPt0Z3Eotw72SVPCmJkXw9iiI4fsWUlblNaYv0QOEbVKUS4KZFE1d0Df_oOuwjUN5KkVbjgVt6Z46Ck0MKUXo_xyGYDVVkJoqSJUKKujsgD44D7v_cmp-95lO_G838snO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760827253</pqid></control><display><type>article</type><title>Integrating plasma cell‐free DNA with clinical laboratory results enhances the prediction of critically ill patients with COVID‐19 at hospital admission</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Bai, Yong ; Zheng, Fang ; Zhang, Tongda ; Luo, Qiuhong ; Luo, Yuxue ; Zhou, Ruilong ; Jin, Yan ; Shan, Ying ; Cheng, Jiehui ; Yang, Zhimin ; Li, Lingguo ; Zhang, Haiqiang ; Zhang, Yan ; Yin, Jianhua ; Fang, Mingyan ; Chen, Dongsheng ; Cheng, Fanjun ; Jin, Xin</creator><creatorcontrib>Bai, Yong ; Zheng, Fang ; Zhang, Tongda ; Luo, Qiuhong ; Luo, Yuxue ; Zhou, Ruilong ; Jin, Yan ; Shan, Ying ; Cheng, Jiehui ; Yang, Zhimin ; Li, Lingguo ; Zhang, Haiqiang ; Zhang, Yan ; Yin, Jianhua ; Fang, Mingyan ; Chen, Dongsheng ; Cheng, Fanjun ; Jin, Xin</creatorcontrib><description>Dear Editor, Owing to the substantial clinical heterogeneity of patients infected with SARS-CoV-2,1,2 factors primarily relying upon clinical and/or laboratory parameters are yet inadequate to accurately predict COVID-19 patients evolving to severe or critical illness at early stage.3,4 Recent studies have revealed an elevated level of cell-free DNA (cfDNA) in plasma in severe COVID-19 patients due to massive cell death or irreversible multiorgan injuries during pathological conditions.5,6 Therefore, the utilization of cfDNA profiling may benefit improving the COVID-19 prediction and help understand molecular characteristics of the life-threatening disease.7,8 Herein, we developed an M2Model, a LightGBM-based9 machine learning model with focal loss as an objective function to predict critical COVID-19 at admission by jointly analysing multimodal data, including laboratory parameters and cfDNA profiles. [...]the M2Model outperformed other single-type feature-based models in discriminating critical from noncritical COVID-19, achieving the highest AUROC (area under ROC curve) of .955 ± .029 (mean ± SD; Figure 1D) and AUPR (area under precision-recall curve) of .827 ± .153 (p < .0001; Figure 1E). Decision curve analysis and confusion matrix also demonstrated the superior prediction ability of the M2Model over other models (Figures 1G,H and S3A–D), with sensitivity of 85.19% (95% confidence interval [CI], 63.6%–100.0%), specificity of 93.33% (95% CI, 86.2%–98.6%), PPV (positive predictive value) of 66.67% (95% CI, 48.8%–88.9%), NPV (negative predictive value) of 97.58% (95% CI, 94.0%–100.0%) and MCC (Matthews correlation coefficient) of 71.02% (95% CI, 49.8%–88.8%) (Table S4).</description><identifier>ISSN: 2001-1326</identifier><identifier>EISSN: 2001-1326</identifier><identifier>DOI: 10.1002/ctm2.966</identifier><identifier>PMID: 35839327</identifier><language>eng</language><publisher>Heidelberg: John Wiley & Sons, Inc</publisher><subject>Coronaviruses ; COVID-19 ; Disease ; DNA methylation ; Genomes ; Illnesses ; Injuries ; Laboratories ; Letter to Editor ; Medical prognosis ; Plasma ; Severe acute respiratory syndrome coronavirus 2 ; Survival analysis</subject><ispartof>Clinical and translational medicine, 2022-07, Vol.12 (7), p.e966-n/a</ispartof><rights>2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4786-c8c06785e1e4c28d3a67b4c82dd7ffe4b0f49f1dd7d8fd56c7f376a081c8c4c43</citedby><cites>FETCH-LOGICAL-c4786-c8c06785e1e4c28d3a67b4c82dd7ffe4b0f49f1dd7d8fd56c7f376a081c8c4c43</cites><orcidid>0000-0001-7185-6445 ; 0000-0001-5960-8000 ; 0000-0003-2400-0315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2760827253/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2760827253?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,38516,43895,44590,46052,46476,53791,53793,74412,75126</link.rule.ids></links><search><creatorcontrib>Bai, Yong</creatorcontrib><creatorcontrib>Zheng, Fang</creatorcontrib><creatorcontrib>Zhang, Tongda</creatorcontrib><creatorcontrib>Luo, Qiuhong</creatorcontrib><creatorcontrib>Luo, Yuxue</creatorcontrib><creatorcontrib>Zhou, Ruilong</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><creatorcontrib>Shan, Ying</creatorcontrib><creatorcontrib>Cheng, Jiehui</creatorcontrib><creatorcontrib>Yang, Zhimin</creatorcontrib><creatorcontrib>Li, Lingguo</creatorcontrib><creatorcontrib>Zhang, Haiqiang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Yin, Jianhua</creatorcontrib><creatorcontrib>Fang, Mingyan</creatorcontrib><creatorcontrib>Chen, Dongsheng</creatorcontrib><creatorcontrib>Cheng, Fanjun</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><title>Integrating plasma cell‐free DNA with clinical laboratory results enhances the prediction of critically ill patients with COVID‐19 at hospital admission</title><title>Clinical and translational medicine</title><description>Dear Editor, Owing to the substantial clinical heterogeneity of patients infected with SARS-CoV-2,1,2 factors primarily relying upon clinical and/or laboratory parameters are yet inadequate to accurately predict COVID-19 patients evolving to severe or critical illness at early stage.3,4 Recent studies have revealed an elevated level of cell-free DNA (cfDNA) in plasma in severe COVID-19 patients due to massive cell death or irreversible multiorgan injuries during pathological conditions.5,6 Therefore, the utilization of cfDNA profiling may benefit improving the COVID-19 prediction and help understand molecular characteristics of the life-threatening disease.7,8 Herein, we developed an M2Model, a LightGBM-based9 machine learning model with focal loss as an objective function to predict critical COVID-19 at admission by jointly analysing multimodal data, including laboratory parameters and cfDNA profiles. [...]the M2Model outperformed other single-type feature-based models in discriminating critical from noncritical COVID-19, achieving the highest AUROC (area under ROC curve) of .955 ± .029 (mean ± SD; Figure 1D) and AUPR (area under precision-recall curve) of .827 ± .153 (p < .0001; Figure 1E). Decision curve analysis and confusion matrix also demonstrated the superior prediction ability of the M2Model over other models (Figures 1G,H and S3A–D), with sensitivity of 85.19% (95% confidence interval [CI], 63.6%–100.0%), specificity of 93.33% (95% CI, 86.2%–98.6%), PPV (positive predictive value) of 66.67% (95% CI, 48.8%–88.9%), NPV (negative predictive value) of 97.58% (95% CI, 94.0%–100.0%) and MCC (Matthews correlation coefficient) of 71.02% (95% CI, 49.8%–88.8%) (Table S4).</description><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease</subject><subject>DNA methylation</subject><subject>Genomes</subject><subject>Illnesses</subject><subject>Injuries</subject><subject>Laboratories</subject><subject>Letter to Editor</subject><subject>Medical prognosis</subject><subject>Plasma</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Survival analysis</subject><issn>2001-1326</issn><issn>2001-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1uEzEUgEcIRKtSiSNYYsMmxfZ4PPYGqUqhRCp0U9haHvtN4sgZD7bTKjuOwAF6Ok6CJ4kQRcIb_33ve_55VfWa4AuCMX1n8oZeSM6fVacUYzIjNeXP_xqfVOcprXFpgknZ0pfVSd2IWta0Pa0eF0OGZdTZDUs0ep02Ghnw_tePn30EQFdfLtGDyytkvBuc0R553YXCh7hDEdLW54RgWOnBQEJ5BWiMYJ3JLgwo9MhEl6cwv0POezSWRDCUkL1zfvttcVUyEYl0RquQRpdLBm03LqUieFW96LVPcH7sz6qvHz_czT_Nbm6vF_PLm5lhreAzIwzmrWiAADNU2FrztmNGUGvbvgfW4Z7JnpSZFb1tuGn7uuUaC1IimWH1WbU4eG3QazVGt9Fxp4J2ar8Q4lLpWK7hQXUNtdDYzhDWME5BkKaZBpSQWkoGxfX-4Bq33QasKbeN2j-RPt0Z3Eotw72SVPCmJkXw9iiI4fsWUlblNaYv0QOEbVKUS4KZFE1d0Df_oOuwjUN5KkVbjgVt6Z46Ck0MKUXo_xyGYDVVkJoqSJUKKujsgD44D7v_cmp-95lO_G838snO</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Bai, Yong</creator><creator>Zheng, Fang</creator><creator>Zhang, Tongda</creator><creator>Luo, Qiuhong</creator><creator>Luo, Yuxue</creator><creator>Zhou, Ruilong</creator><creator>Jin, Yan</creator><creator>Shan, Ying</creator><creator>Cheng, Jiehui</creator><creator>Yang, Zhimin</creator><creator>Li, Lingguo</creator><creator>Zhang, Haiqiang</creator><creator>Zhang, Yan</creator><creator>Yin, Jianhua</creator><creator>Fang, Mingyan</creator><creator>Chen, Dongsheng</creator><creator>Cheng, Fanjun</creator><creator>Jin, Xin</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7185-6445</orcidid><orcidid>https://orcid.org/0000-0001-5960-8000</orcidid><orcidid>https://orcid.org/0000-0003-2400-0315</orcidid></search><sort><creationdate>202207</creationdate><title>Integrating plasma cell‐free DNA with clinical laboratory results enhances the prediction of critically ill patients with COVID‐19 at hospital admission</title><author>Bai, Yong ; Zheng, Fang ; Zhang, Tongda ; Luo, Qiuhong ; Luo, Yuxue ; Zhou, Ruilong ; Jin, Yan ; Shan, Ying ; Cheng, Jiehui ; Yang, Zhimin ; Li, Lingguo ; Zhang, Haiqiang ; Zhang, Yan ; Yin, Jianhua ; Fang, Mingyan ; Chen, Dongsheng ; Cheng, Fanjun ; Jin, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4786-c8c06785e1e4c28d3a67b4c82dd7ffe4b0f49f1dd7d8fd56c7f376a081c8c4c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease</topic><topic>DNA methylation</topic><topic>Genomes</topic><topic>Illnesses</topic><topic>Injuries</topic><topic>Laboratories</topic><topic>Letter to Editor</topic><topic>Medical prognosis</topic><topic>Plasma</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yong</creatorcontrib><creatorcontrib>Zheng, Fang</creatorcontrib><creatorcontrib>Zhang, Tongda</creatorcontrib><creatorcontrib>Luo, Qiuhong</creatorcontrib><creatorcontrib>Luo, Yuxue</creatorcontrib><creatorcontrib>Zhou, Ruilong</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><creatorcontrib>Shan, Ying</creatorcontrib><creatorcontrib>Cheng, Jiehui</creatorcontrib><creatorcontrib>Yang, Zhimin</creatorcontrib><creatorcontrib>Li, Lingguo</creatorcontrib><creatorcontrib>Zhang, Haiqiang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Yin, Jianhua</creatorcontrib><creatorcontrib>Fang, Mingyan</creatorcontrib><creatorcontrib>Chen, Dongsheng</creatorcontrib><creatorcontrib>Cheng, Fanjun</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Clinical and translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yong</au><au>Zheng, Fang</au><au>Zhang, Tongda</au><au>Luo, Qiuhong</au><au>Luo, Yuxue</au><au>Zhou, Ruilong</au><au>Jin, Yan</au><au>Shan, Ying</au><au>Cheng, Jiehui</au><au>Yang, Zhimin</au><au>Li, Lingguo</au><au>Zhang, Haiqiang</au><au>Zhang, Yan</au><au>Yin, Jianhua</au><au>Fang, Mingyan</au><au>Chen, Dongsheng</au><au>Cheng, Fanjun</au><au>Jin, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating plasma cell‐free DNA with clinical laboratory results enhances the prediction of critically ill patients with COVID‐19 at hospital admission</atitle><jtitle>Clinical and translational medicine</jtitle><date>2022-07</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>e966</spage><epage>n/a</epage><pages>e966-n/a</pages><issn>2001-1326</issn><eissn>2001-1326</eissn><abstract>Dear Editor, Owing to the substantial clinical heterogeneity of patients infected with SARS-CoV-2,1,2 factors primarily relying upon clinical and/or laboratory parameters are yet inadequate to accurately predict COVID-19 patients evolving to severe or critical illness at early stage.3,4 Recent studies have revealed an elevated level of cell-free DNA (cfDNA) in plasma in severe COVID-19 patients due to massive cell death or irreversible multiorgan injuries during pathological conditions.5,6 Therefore, the utilization of cfDNA profiling may benefit improving the COVID-19 prediction and help understand molecular characteristics of the life-threatening disease.7,8 Herein, we developed an M2Model, a LightGBM-based9 machine learning model with focal loss as an objective function to predict critical COVID-19 at admission by jointly analysing multimodal data, including laboratory parameters and cfDNA profiles. [...]the M2Model outperformed other single-type feature-based models in discriminating critical from noncritical COVID-19, achieving the highest AUROC (area under ROC curve) of .955 ± .029 (mean ± SD; Figure 1D) and AUPR (area under precision-recall curve) of .827 ± .153 (p < .0001; Figure 1E). Decision curve analysis and confusion matrix also demonstrated the superior prediction ability of the M2Model over other models (Figures 1G,H and S3A–D), with sensitivity of 85.19% (95% confidence interval [CI], 63.6%–100.0%), specificity of 93.33% (95% CI, 86.2%–98.6%), PPV (positive predictive value) of 66.67% (95% CI, 48.8%–88.9%), NPV (negative predictive value) of 97.58% (95% CI, 94.0%–100.0%) and MCC (Matthews correlation coefficient) of 71.02% (95% CI, 49.8%–88.8%) (Table S4).</abstract><cop>Heidelberg</cop><pub>John Wiley & Sons, Inc</pub><pmid>35839327</pmid><doi>10.1002/ctm2.966</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7185-6445</orcidid><orcidid>https://orcid.org/0000-0001-5960-8000</orcidid><orcidid>https://orcid.org/0000-0003-2400-0315</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2001-1326 |
ispartof | Clinical and translational medicine, 2022-07, Vol.12 (7), p.e966-n/a |
issn | 2001-1326 2001-1326 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b52de5dbc145462e815554622113994e |
source | Publicly Available Content Database; Wiley Open Access; PubMed Central; Coronavirus Research Database |
subjects | Coronaviruses COVID-19 Disease DNA methylation Genomes Illnesses Injuries Laboratories Letter to Editor Medical prognosis Plasma Severe acute respiratory syndrome coronavirus 2 Survival analysis |
title | Integrating plasma cell‐free DNA with clinical laboratory results enhances the prediction of critically ill patients with COVID‐19 at hospital admission |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20plasma%20cell%E2%80%90free%20DNA%20with%20clinical%20laboratory%20results%20enhances%20the%20prediction%20of%20critically%20ill%20patients%20with%20COVID%E2%80%9019%20at%20hospital%20admission&rft.jtitle=Clinical%20and%20translational%20medicine&rft.au=Bai,%20Yong&rft.date=2022-07&rft.volume=12&rft.issue=7&rft.spage=e966&rft.epage=n/a&rft.pages=e966-n/a&rft.issn=2001-1326&rft.eissn=2001-1326&rft_id=info:doi/10.1002/ctm2.966&rft_dat=%3Cproquest_doaj_%3E2760827253%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4786-c8c06785e1e4c28d3a67b4c82dd7ffe4b0f49f1dd7d8fd56c7f376a081c8c4c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760827253&rft_id=info:pmid/35839327&rfr_iscdi=true |