Loading…

Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams

The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser refle...

Full description

Saved in:
Bibliographic Details
Published in:Communications physics 2022-05, Vol.5 (1), p.1-13, Article 116
Main Authors: Blackman, David R., Shi, Yin, Klein, Sallee R., Cernaianu, Mihail, Doria, Domenico, Ghenuche, Petru, Arefiev, Alexey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583
cites cdi_FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583
container_end_page 13
container_issue 1
container_start_page 1
container_title Communications physics
container_volume 5
creator Blackman, David R.
Shi, Yin
Klein, Sallee R.
Cernaianu, Mihail
Doria, Domenico
Ghenuche, Petru
Arefiev, Alexey
description The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration). Plasma mirrors have become the preferred method for electron injection to laser-based accelerators, but the optimal configuration is difficult to achieve. Here, an alternative injection method employing a low-density foam target and a helical laser pulse is investigated numerically.
doi_str_mv 10.1038/s42005-022-00894-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b53ca7f2a714439389c4d0250d6af3a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b53ca7f2a714439389c4d0250d6af3a0</doaj_id><sourcerecordid>2663154764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583</originalsourceid><addsrcrecordid>eNp9kUtP3TAQhSPUSiDgD3RliXXKxOO8lghRioTEBrZYE3t8yVVuchn7Lvj3uKQqrLqah875ZqRTFD8q-FkBdpfRaIC6BK1LgK43JR4VJxr7vsSmhm9f-uPiPMYtAOjKQIvNSfF8M7FLssyKnOOJhdKYhyDLTiWhOe5JeE4qkWw4RTWKkB8psVfDmzpMWVOOc-I5snrhaXQ0qYkiixqYdvGs-B5oinz-t54WT79uHq9_l_cPt3fXV_elQ2Ow7CBg3xmt0RtPBtk7DZUhGLDV5Fi3LnAfHFJN7YAmNA0Nfui8cZq7usPT4m7l-oW2di_jjuTNLjTaj8UiG0uSRjexHWp01AZNbZVP99j1znjQNfiGAhJk1sXK2svyeuCY7HY5yJzft7ppsKpN25is0qvKyRKjcPh3tQL7Jxa7xmJzLPYjFovZhKspZvG8YflE_8f1DmdDkIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663154764</pqid></control><display><type>article</type><title>Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams</title><source>Access via ProQuest (Open Access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Blackman, David R. ; Shi, Yin ; Klein, Sallee R. ; Cernaianu, Mihail ; Doria, Domenico ; Ghenuche, Petru ; Arefiev, Alexey</creator><creatorcontrib>Blackman, David R. ; Shi, Yin ; Klein, Sallee R. ; Cernaianu, Mihail ; Doria, Domenico ; Ghenuche, Petru ; Arefiev, Alexey</creatorcontrib><description>The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration). Plasma mirrors have become the preferred method for electron injection to laser-based accelerators, but the optimal configuration is difficult to achieve. Here, an alternative injection method employing a low-density foam target and a helical laser pulse is investigated numerically.</description><identifier>ISSN: 2399-3650</identifier><identifier>EISSN: 2399-3650</identifier><identifier>DOI: 10.1038/s42005-022-00894-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1088 ; 639/766/1960/1137 ; Electron acceleration ; Electron beams ; Electron bunching ; Expulsion ; Helicity ; Laser applications ; Laser beams ; Lasers ; Physics ; Physics and Astronomy ; Plasma density</subject><ispartof>Communications physics, 2022-05, Vol.5 (1), p.1-13, Article 116</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583</citedby><cites>FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583</cites><orcidid>0000-0002-0597-0976 ; 0000-0001-8776-5791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2663154764?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Blackman, David R.</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Klein, Sallee R.</creatorcontrib><creatorcontrib>Cernaianu, Mihail</creatorcontrib><creatorcontrib>Doria, Domenico</creatorcontrib><creatorcontrib>Ghenuche, Petru</creatorcontrib><creatorcontrib>Arefiev, Alexey</creatorcontrib><title>Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams</title><title>Communications physics</title><addtitle>Commun Phys</addtitle><description>The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration). Plasma mirrors have become the preferred method for electron injection to laser-based accelerators, but the optimal configuration is difficult to achieve. Here, an alternative injection method employing a low-density foam target and a helical laser pulse is investigated numerically.</description><subject>639/624/1020/1088</subject><subject>639/766/1960/1137</subject><subject>Electron acceleration</subject><subject>Electron beams</subject><subject>Electron bunching</subject><subject>Expulsion</subject><subject>Helicity</subject><subject>Laser applications</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma density</subject><issn>2399-3650</issn><issn>2399-3650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtP3TAQhSPUSiDgD3RliXXKxOO8lghRioTEBrZYE3t8yVVuchn7Lvj3uKQqrLqah875ZqRTFD8q-FkBdpfRaIC6BK1LgK43JR4VJxr7vsSmhm9f-uPiPMYtAOjKQIvNSfF8M7FLssyKnOOJhdKYhyDLTiWhOe5JeE4qkWw4RTWKkB8psVfDmzpMWVOOc-I5snrhaXQ0qYkiixqYdvGs-B5oinz-t54WT79uHq9_l_cPt3fXV_elQ2Ow7CBg3xmt0RtPBtk7DZUhGLDV5Fi3LnAfHFJN7YAmNA0Nfui8cZq7usPT4m7l-oW2di_jjuTNLjTaj8UiG0uSRjexHWp01AZNbZVP99j1znjQNfiGAhJk1sXK2svyeuCY7HY5yJzft7ppsKpN25is0qvKyRKjcPh3tQL7Jxa7xmJzLPYjFovZhKspZvG8YflE_8f1DmdDkIQ</recordid><startdate>20220512</startdate><enddate>20220512</enddate><creator>Blackman, David R.</creator><creator>Shi, Yin</creator><creator>Klein, Sallee R.</creator><creator>Cernaianu, Mihail</creator><creator>Doria, Domenico</creator><creator>Ghenuche, Petru</creator><creator>Arefiev, Alexey</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0597-0976</orcidid><orcidid>https://orcid.org/0000-0001-8776-5791</orcidid></search><sort><creationdate>20220512</creationdate><title>Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams</title><author>Blackman, David R. ; Shi, Yin ; Klein, Sallee R. ; Cernaianu, Mihail ; Doria, Domenico ; Ghenuche, Petru ; Arefiev, Alexey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/624/1020/1088</topic><topic>639/766/1960/1137</topic><topic>Electron acceleration</topic><topic>Electron beams</topic><topic>Electron bunching</topic><topic>Expulsion</topic><topic>Helicity</topic><topic>Laser applications</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackman, David R.</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Klein, Sallee R.</creatorcontrib><creatorcontrib>Cernaianu, Mihail</creatorcontrib><creatorcontrib>Doria, Domenico</creatorcontrib><creatorcontrib>Ghenuche, Petru</creatorcontrib><creatorcontrib>Arefiev, Alexey</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Journals (ProQuest Database)</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackman, David R.</au><au>Shi, Yin</au><au>Klein, Sallee R.</au><au>Cernaianu, Mihail</au><au>Doria, Domenico</au><au>Ghenuche, Petru</au><au>Arefiev, Alexey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams</atitle><jtitle>Communications physics</jtitle><stitle>Commun Phys</stitle><date>2022-05-12</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>116</artnum><issn>2399-3650</issn><eissn>2399-3650</eissn><abstract>The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration). Plasma mirrors have become the preferred method for electron injection to laser-based accelerators, but the optimal configuration is difficult to achieve. Here, an alternative injection method employing a low-density foam target and a helical laser pulse is investigated numerically.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42005-022-00894-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0597-0976</orcidid><orcidid>https://orcid.org/0000-0001-8776-5791</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3650
ispartof Communications physics, 2022-05, Vol.5 (1), p.1-13, Article 116
issn 2399-3650
2399-3650
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b53ca7f2a714439389c4d0250d6af3a0
source Access via ProQuest (Open Access); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/1020/1088
639/766/1960/1137
Electron acceleration
Electron beams
Electron bunching
Expulsion
Helicity
Laser applications
Laser beams
Lasers
Physics
Physics and Astronomy
Plasma density
title Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20acceleration%20from%20transparent%20targets%20irradiated%20by%20ultra-intense%20helical%20laser%20beams&rft.jtitle=Communications%20physics&rft.au=Blackman,%20David%20R.&rft.date=2022-05-12&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=116&rft.issn=2399-3650&rft.eissn=2399-3650&rft_id=info:doi/10.1038/s42005-022-00894-3&rft_dat=%3Cproquest_doaj_%3E2663154764%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2663154764&rft_id=info:pmid/&rfr_iscdi=true