Loading…
Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams
The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser refle...
Saved in:
Published in: | Communications physics 2022-05, Vol.5 (1), p.1-13, Article 116 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583 |
---|---|
cites | cdi_FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 1 |
container_title | Communications physics |
container_volume | 5 |
creator | Blackman, David R. Shi, Yin Klein, Sallee R. Cernaianu, Mihail Doria, Domenico Ghenuche, Petru Arefiev, Alexey |
description | The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration).
Plasma mirrors have become the preferred method for electron injection to laser-based accelerators, but the optimal configuration is difficult to achieve. Here, an alternative injection method employing a low-density foam target and a helical laser pulse is investigated numerically. |
doi_str_mv | 10.1038/s42005-022-00894-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b53ca7f2a714439389c4d0250d6af3a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b53ca7f2a714439389c4d0250d6af3a0</doaj_id><sourcerecordid>2663154764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583</originalsourceid><addsrcrecordid>eNp9kUtP3TAQhSPUSiDgD3RliXXKxOO8lghRioTEBrZYE3t8yVVuchn7Lvj3uKQqrLqah875ZqRTFD8q-FkBdpfRaIC6BK1LgK43JR4VJxr7vsSmhm9f-uPiPMYtAOjKQIvNSfF8M7FLssyKnOOJhdKYhyDLTiWhOe5JeE4qkWw4RTWKkB8psVfDmzpMWVOOc-I5snrhaXQ0qYkiixqYdvGs-B5oinz-t54WT79uHq9_l_cPt3fXV_elQ2Ow7CBg3xmt0RtPBtk7DZUhGLDV5Fi3LnAfHFJN7YAmNA0Nfui8cZq7usPT4m7l-oW2di_jjuTNLjTaj8UiG0uSRjexHWp01AZNbZVP99j1znjQNfiGAhJk1sXK2svyeuCY7HY5yJzft7ppsKpN25is0qvKyRKjcPh3tQL7Jxa7xmJzLPYjFovZhKspZvG8YflE_8f1DmdDkIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663154764</pqid></control><display><type>article</type><title>Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams</title><source>Access via ProQuest (Open Access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Blackman, David R. ; Shi, Yin ; Klein, Sallee R. ; Cernaianu, Mihail ; Doria, Domenico ; Ghenuche, Petru ; Arefiev, Alexey</creator><creatorcontrib>Blackman, David R. ; Shi, Yin ; Klein, Sallee R. ; Cernaianu, Mihail ; Doria, Domenico ; Ghenuche, Petru ; Arefiev, Alexey</creatorcontrib><description>The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration).
Plasma mirrors have become the preferred method for electron injection to laser-based accelerators, but the optimal configuration is difficult to achieve. Here, an alternative injection method employing a low-density foam target and a helical laser pulse is investigated numerically.</description><identifier>ISSN: 2399-3650</identifier><identifier>EISSN: 2399-3650</identifier><identifier>DOI: 10.1038/s42005-022-00894-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1088 ; 639/766/1960/1137 ; Electron acceleration ; Electron beams ; Electron bunching ; Expulsion ; Helicity ; Laser applications ; Laser beams ; Lasers ; Physics ; Physics and Astronomy ; Plasma density</subject><ispartof>Communications physics, 2022-05, Vol.5 (1), p.1-13, Article 116</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583</citedby><cites>FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583</cites><orcidid>0000-0002-0597-0976 ; 0000-0001-8776-5791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2663154764?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Blackman, David R.</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Klein, Sallee R.</creatorcontrib><creatorcontrib>Cernaianu, Mihail</creatorcontrib><creatorcontrib>Doria, Domenico</creatorcontrib><creatorcontrib>Ghenuche, Petru</creatorcontrib><creatorcontrib>Arefiev, Alexey</creatorcontrib><title>Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams</title><title>Communications physics</title><addtitle>Commun Phys</addtitle><description>The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration).
Plasma mirrors have become the preferred method for electron injection to laser-based accelerators, but the optimal configuration is difficult to achieve. Here, an alternative injection method employing a low-density foam target and a helical laser pulse is investigated numerically.</description><subject>639/624/1020/1088</subject><subject>639/766/1960/1137</subject><subject>Electron acceleration</subject><subject>Electron beams</subject><subject>Electron bunching</subject><subject>Expulsion</subject><subject>Helicity</subject><subject>Laser applications</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma density</subject><issn>2399-3650</issn><issn>2399-3650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtP3TAQhSPUSiDgD3RliXXKxOO8lghRioTEBrZYE3t8yVVuchn7Lvj3uKQqrLqah875ZqRTFD8q-FkBdpfRaIC6BK1LgK43JR4VJxr7vsSmhm9f-uPiPMYtAOjKQIvNSfF8M7FLssyKnOOJhdKYhyDLTiWhOe5JeE4qkWw4RTWKkB8psVfDmzpMWVOOc-I5snrhaXQ0qYkiixqYdvGs-B5oinz-t54WT79uHq9_l_cPt3fXV_elQ2Ow7CBg3xmt0RtPBtk7DZUhGLDV5Fi3LnAfHFJN7YAmNA0Nfui8cZq7usPT4m7l-oW2di_jjuTNLjTaj8UiG0uSRjexHWp01AZNbZVP99j1znjQNfiGAhJk1sXK2svyeuCY7HY5yJzft7ppsKpN25is0qvKyRKjcPh3tQL7Jxa7xmJzLPYjFovZhKspZvG8YflE_8f1DmdDkIQ</recordid><startdate>20220512</startdate><enddate>20220512</enddate><creator>Blackman, David R.</creator><creator>Shi, Yin</creator><creator>Klein, Sallee R.</creator><creator>Cernaianu, Mihail</creator><creator>Doria, Domenico</creator><creator>Ghenuche, Petru</creator><creator>Arefiev, Alexey</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0597-0976</orcidid><orcidid>https://orcid.org/0000-0001-8776-5791</orcidid></search><sort><creationdate>20220512</creationdate><title>Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams</title><author>Blackman, David R. ; Shi, Yin ; Klein, Sallee R. ; Cernaianu, Mihail ; Doria, Domenico ; Ghenuche, Petru ; Arefiev, Alexey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/624/1020/1088</topic><topic>639/766/1960/1137</topic><topic>Electron acceleration</topic><topic>Electron beams</topic><topic>Electron bunching</topic><topic>Expulsion</topic><topic>Helicity</topic><topic>Laser applications</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackman, David R.</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Klein, Sallee R.</creatorcontrib><creatorcontrib>Cernaianu, Mihail</creatorcontrib><creatorcontrib>Doria, Domenico</creatorcontrib><creatorcontrib>Ghenuche, Petru</creatorcontrib><creatorcontrib>Arefiev, Alexey</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Journals (ProQuest Database)</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackman, David R.</au><au>Shi, Yin</au><au>Klein, Sallee R.</au><au>Cernaianu, Mihail</au><au>Doria, Domenico</au><au>Ghenuche, Petru</au><au>Arefiev, Alexey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams</atitle><jtitle>Communications physics</jtitle><stitle>Commun Phys</stitle><date>2022-05-12</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>116</artnum><issn>2399-3650</issn><eissn>2399-3650</eissn><abstract>The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration).
Plasma mirrors have become the preferred method for electron injection to laser-based accelerators, but the optimal configuration is difficult to achieve. Here, an alternative injection method employing a low-density foam target and a helical laser pulse is investigated numerically.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42005-022-00894-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0597-0976</orcidid><orcidid>https://orcid.org/0000-0001-8776-5791</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3650 |
ispartof | Communications physics, 2022-05, Vol.5 (1), p.1-13, Article 116 |
issn | 2399-3650 2399-3650 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b53ca7f2a714439389c4d0250d6af3a0 |
source | Access via ProQuest (Open Access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/1020/1088 639/766/1960/1137 Electron acceleration Electron beams Electron bunching Expulsion Helicity Laser applications Laser beams Lasers Physics Physics and Astronomy Plasma density |
title | Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20acceleration%20from%20transparent%20targets%20irradiated%20by%20ultra-intense%20helical%20laser%20beams&rft.jtitle=Communications%20physics&rft.au=Blackman,%20David%20R.&rft.date=2022-05-12&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=116&rft.issn=2399-3650&rft.eissn=2399-3650&rft_id=info:doi/10.1038/s42005-022-00894-3&rft_dat=%3Cproquest_doaj_%3E2663154764%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3443-80f3984223d4da43edc2014a0b372ace27cfe9fc3a5a7b34f66abdb8d4c2e8583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2663154764&rft_id=info:pmid/&rfr_iscdi=true |