Loading…
Responses of the blood acid-base balance and blood plasma metabolomics of broiler chickens after change to diets with high free amino acid levels
Free amino acids (AA) are needed to fulfill the AA requirements of broiler chickens in diets low in CP. This study investigated whether the acid-base balance and the blood plasma metabolome are affected immediately after a change to diets with high free AA levels. Male broiler chickens received a st...
Saved in:
Published in: | Poultry science 2024-08, Vol.103 (8), p.103956, Article 103956 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Free amino acids (AA) are needed to fulfill the AA requirements of broiler chickens in diets low in CP. This study investigated whether the acid-base balance and the blood plasma metabolome are affected immediately after a change to diets with high free AA levels. Male broiler chickens received a starter diet with 164 g CP/kg and 80 g soy protein isolate/kg until d 7 post-hatch. From this day on, birds were offered a diet almost identical to the starter diet (0FAA) or 2 diets with 50% (50FAA) or 100% (100FAA) of the digestible AA from soy protein isolate substituted with free AA. Blood was sampled to determine the acid-base status and for untargeted metabolomics analysis on d 0, 1, 2, 4, 7, and 14 and d 1, 7, and 14 after diet change, respectively (n = 14 birds/treatment). Compared to 0FAA, blood pH was decreased on d 4 and 7 for 100FAA and on d 4 for 50FAA (P ≤ 0.019). On d 4, 7, and 14, bicarbonate, base excess, and total carbon dioxide were lower for 100FAA than for 0FAA (P ≤ 0.006). The partial pressure of carbon dioxide was higher for 50FAA than for 0FAA on d 4 (P = 0.047). Compared to 0FAA, chloride was higher for 100FAA on d 1, 2, 4, 7, and 14, and for 50FAA on d 1, 2, and 4 (P ≤ 0.030). In the metabolomics assay, 602, 463, and 302 metabolites were affected by treatment on d 1, 7, and 14, respectively (P < 0.050), but they did not indicate that metabolic pathways were affected. Flavonoids were the most consistently affected category of metabolites. The results indicated a metabolic acidosis for 100FAA from d 4 to 7 and a respiratory acidosis for 50FAA on d 4 after diet change. These types of acidosis were compensated later on in the experiment. The metabolomics analysis did not indicate that high free AA inclusion affected metabolic pathways. |
---|---|
ISSN: | 0032-5791 1525-3171 1525-3171 |
DOI: | 10.1016/j.psj.2024.103956 |