Loading…

The role of cysteine residues in the allosteric modulation of the chromophore phototransformations of biphotochromic fluorescent protein SAASoti

Biphotochromic fluorescent protein SAASoti contains five cysteine residues in its sequence and a V127T point mutation transforms it to the monomeric form, mSAASoti. These cysteine residues are located far from the chromophore and might control its properties only allosterically. The influence of ind...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-12, Vol.11 (1), p.24314-24314, Article 24314
Main Authors: Gavshina, A. V., Marynich, N. K., Khrenova, M. G., Solovyev, I. D., Savitsky, A. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-ccfa7c3ad311ba3c0290ef48e7553e5c84e9fec940feb2f837100ebb2046fb63
cites cdi_FETCH-LOGICAL-c540t-ccfa7c3ad311ba3c0290ef48e7553e5c84e9fec940feb2f837100ebb2046fb63
container_end_page 24314
container_issue 1
container_start_page 24314
container_title Scientific reports
container_volume 11
creator Gavshina, A. V.
Marynich, N. K.
Khrenova, M. G.
Solovyev, I. D.
Savitsky, A. P.
description Biphotochromic fluorescent protein SAASoti contains five cysteine residues in its sequence and a V127T point mutation transforms it to the monomeric form, mSAASoti. These cysteine residues are located far from the chromophore and might control its properties only allosterically. The influence of individual, double and triple cysteine substitutions of mSAASoti on fluorescent parameters and phototransformation reactions (irreversible green-to-red photoconversion and reversible photoswitching) is studied. A set of mSAASoti mutant forms (C21N, C117S, C71V, C105V, C175A, C21N/C71V, C21N/C175A, C21N/C71G/C175A) is obtained by site-directed mutagenesis. We demonstrate that the C21N variant exists in a monomeric form up to high concentrations, the C71V substitution accelerates photoconversion to the red form and the C105V variant has the maximum photoswitching rate. All C175A-containing variants demonstrate different photoswitching kinetics and decreased photostability during subsequent switching cycles compared with other considered systems. Classical molecular dynamic simulations reveal that the F177 side chain located in the vicinity of the chromophore is considerably more flexible in the mSAASoti compared with its C175A variant. This might be the explanation of the experimentally observed slowdown the thermal relaxation rate, i.e., trans–cis isomerization of the chromophore in mSAASoti upon C175A substitution.
doi_str_mv 10.1038/s41598-021-03634-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b565d92a74ff447493bf3a65236a18ee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b565d92a74ff447493bf3a65236a18ee</doaj_id><sourcerecordid>2612224794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ccfa7c3ad311ba3c0290ef48e7553e5c84e9fec940feb2f837100ebb2046fb63</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAkdiwCfg3iTdIo4qfSpVYdPaW41zPeJTEg-0g9S36yNxkSmlZkIVj-Xw-9j2-RfGWko-U8PZTElSqtiKMVoTXXFTqRXHOiJAV44y9fDI_Ky5TOhD8JFOCqtfFGReKC7Q5L-63eyhjGKAMrrR3KYOfcAGS72dIpZ_KjIAZhoBS9LYcQz8PJvswLTsW0e5jGMNxHyKUOOaQo5mSC3FcsbRwnV-VFUUTN8xIJwtTLo8xLIeWt5vNbcj-TfHKmSHB5cP_oth-_bK9-l7d_Ph2fbW5qawUJFfWOtNYbnpOaWe4JUwRcKKFRkoO0rYClAOrBHHQMdfyhhICXYep1K6r-UVxfbLtgznoY_SjiXc6GK_XhRB32sTs7QC6k7XsFTONcE6IBqPrHDe1ZLw2tAVAr88nr-PcjdAvVUUzPDN9rkx-r3fhl25rxfBB0ODDg0EMPzH2rEeP4QyDmSDMSbOasqYRWAOi7_9BD2GOEya1UoyJRgmk2ImyMaQUwT1ehhK9tI8-tY_G9tFr--jlFu-elvG45U-zIMBPQEJp2kH8e_Z_bH8DpqzUsA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612224794</pqid></control><display><type>article</type><title>The role of cysteine residues in the allosteric modulation of the chromophore phototransformations of biphotochromic fluorescent protein SAASoti</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Gavshina, A. V. ; Marynich, N. K. ; Khrenova, M. G. ; Solovyev, I. D. ; Savitsky, A. P.</creator><creatorcontrib>Gavshina, A. V. ; Marynich, N. K. ; Khrenova, M. G. ; Solovyev, I. D. ; Savitsky, A. P.</creatorcontrib><description>Biphotochromic fluorescent protein SAASoti contains five cysteine residues in its sequence and a V127T point mutation transforms it to the monomeric form, mSAASoti. These cysteine residues are located far from the chromophore and might control its properties only allosterically. The influence of individual, double and triple cysteine substitutions of mSAASoti on fluorescent parameters and phototransformation reactions (irreversible green-to-red photoconversion and reversible photoswitching) is studied. A set of mSAASoti mutant forms (C21N, C117S, C71V, C105V, C175A, C21N/C71V, C21N/C175A, C21N/C71G/C175A) is obtained by site-directed mutagenesis. We demonstrate that the C21N variant exists in a monomeric form up to high concentrations, the C71V substitution accelerates photoconversion to the red form and the C105V variant has the maximum photoswitching rate. All C175A-containing variants demonstrate different photoswitching kinetics and decreased photostability during subsequent switching cycles compared with other considered systems. Classical molecular dynamic simulations reveal that the F177 side chain located in the vicinity of the chromophore is considerably more flexible in the mSAASoti compared with its C175A variant. This might be the explanation of the experimentally observed slowdown the thermal relaxation rate, i.e., trans–cis isomerization of the chromophore in mSAASoti upon C175A substitution.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-03634-9</identifier><identifier>PMID: 34934103</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/2783 ; 631/45/56 ; 631/57/2266 ; 631/57/2267 ; Allosteric properties ; Allosteric Site ; Amino acids ; Chromophores ; Cysteine ; Cysteine - chemistry ; Cysteine - genetics ; Humanities and Social Sciences ; Isomerization ; Luminescent Proteins - chemistry ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; multidisciplinary ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutation ; Oxidative stress ; Photochemical Processes ; Point Mutation ; Protein Conformation ; Proteins ; Rhodophyta - metabolism ; Science ; Science (multidisciplinary) ; Site-directed mutagenesis</subject><ispartof>Scientific reports, 2021-12, Vol.11 (1), p.24314-24314, Article 24314</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ccfa7c3ad311ba3c0290ef48e7553e5c84e9fec940feb2f837100ebb2046fb63</citedby><cites>FETCH-LOGICAL-c540t-ccfa7c3ad311ba3c0290ef48e7553e5c84e9fec940feb2f837100ebb2046fb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612224794/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612224794?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34934103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gavshina, A. V.</creatorcontrib><creatorcontrib>Marynich, N. K.</creatorcontrib><creatorcontrib>Khrenova, M. G.</creatorcontrib><creatorcontrib>Solovyev, I. D.</creatorcontrib><creatorcontrib>Savitsky, A. P.</creatorcontrib><title>The role of cysteine residues in the allosteric modulation of the chromophore phototransformations of biphotochromic fluorescent protein SAASoti</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Biphotochromic fluorescent protein SAASoti contains five cysteine residues in its sequence and a V127T point mutation transforms it to the monomeric form, mSAASoti. These cysteine residues are located far from the chromophore and might control its properties only allosterically. The influence of individual, double and triple cysteine substitutions of mSAASoti on fluorescent parameters and phototransformation reactions (irreversible green-to-red photoconversion and reversible photoswitching) is studied. A set of mSAASoti mutant forms (C21N, C117S, C71V, C105V, C175A, C21N/C71V, C21N/C175A, C21N/C71G/C175A) is obtained by site-directed mutagenesis. We demonstrate that the C21N variant exists in a monomeric form up to high concentrations, the C71V substitution accelerates photoconversion to the red form and the C105V variant has the maximum photoswitching rate. All C175A-containing variants demonstrate different photoswitching kinetics and decreased photostability during subsequent switching cycles compared with other considered systems. Classical molecular dynamic simulations reveal that the F177 side chain located in the vicinity of the chromophore is considerably more flexible in the mSAASoti compared with its C175A variant. This might be the explanation of the experimentally observed slowdown the thermal relaxation rate, i.e., trans–cis isomerization of the chromophore in mSAASoti upon C175A substitution.</description><subject>631/45/2783</subject><subject>631/45/56</subject><subject>631/57/2266</subject><subject>631/57/2267</subject><subject>Allosteric properties</subject><subject>Allosteric Site</subject><subject>Amino acids</subject><subject>Chromophores</subject><subject>Cysteine</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Isomerization</subject><subject>Luminescent Proteins - chemistry</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Oxidative stress</subject><subject>Photochemical Processes</subject><subject>Point Mutation</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Rhodophyta - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Site-directed mutagenesis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAkdiwCfg3iTdIo4qfSpVYdPaW41zPeJTEg-0g9S36yNxkSmlZkIVj-Xw-9j2-RfGWko-U8PZTElSqtiKMVoTXXFTqRXHOiJAV44y9fDI_Ky5TOhD8JFOCqtfFGReKC7Q5L-63eyhjGKAMrrR3KYOfcAGS72dIpZ_KjIAZhoBS9LYcQz8PJvswLTsW0e5jGMNxHyKUOOaQo5mSC3FcsbRwnV-VFUUTN8xIJwtTLo8xLIeWt5vNbcj-TfHKmSHB5cP_oth-_bK9-l7d_Ph2fbW5qawUJFfWOtNYbnpOaWe4JUwRcKKFRkoO0rYClAOrBHHQMdfyhhICXYep1K6r-UVxfbLtgznoY_SjiXc6GK_XhRB32sTs7QC6k7XsFTONcE6IBqPrHDe1ZLw2tAVAr88nr-PcjdAvVUUzPDN9rkx-r3fhl25rxfBB0ODDg0EMPzH2rEeP4QyDmSDMSbOasqYRWAOi7_9BD2GOEya1UoyJRgmk2ImyMaQUwT1ehhK9tI8-tY_G9tFr--jlFu-elvG45U-zIMBPQEJp2kH8e_Z_bH8DpqzUsA</recordid><startdate>20211221</startdate><enddate>20211221</enddate><creator>Gavshina, A. V.</creator><creator>Marynich, N. K.</creator><creator>Khrenova, M. G.</creator><creator>Solovyev, I. D.</creator><creator>Savitsky, A. P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211221</creationdate><title>The role of cysteine residues in the allosteric modulation of the chromophore phototransformations of biphotochromic fluorescent protein SAASoti</title><author>Gavshina, A. V. ; Marynich, N. K. ; Khrenova, M. G. ; Solovyev, I. D. ; Savitsky, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ccfa7c3ad311ba3c0290ef48e7553e5c84e9fec940feb2f837100ebb2046fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/45/2783</topic><topic>631/45/56</topic><topic>631/57/2266</topic><topic>631/57/2267</topic><topic>Allosteric properties</topic><topic>Allosteric Site</topic><topic>Amino acids</topic><topic>Chromophores</topic><topic>Cysteine</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Isomerization</topic><topic>Luminescent Proteins - chemistry</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Oxidative stress</topic><topic>Photochemical Processes</topic><topic>Point Mutation</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Rhodophyta - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Site-directed mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavshina, A. V.</creatorcontrib><creatorcontrib>Marynich, N. K.</creatorcontrib><creatorcontrib>Khrenova, M. G.</creatorcontrib><creatorcontrib>Solovyev, I. D.</creatorcontrib><creatorcontrib>Savitsky, A. P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavshina, A. V.</au><au>Marynich, N. K.</au><au>Khrenova, M. G.</au><au>Solovyev, I. D.</au><au>Savitsky, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of cysteine residues in the allosteric modulation of the chromophore phototransformations of biphotochromic fluorescent protein SAASoti</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-12-21</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>24314</spage><epage>24314</epage><pages>24314-24314</pages><artnum>24314</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Biphotochromic fluorescent protein SAASoti contains five cysteine residues in its sequence and a V127T point mutation transforms it to the monomeric form, mSAASoti. These cysteine residues are located far from the chromophore and might control its properties only allosterically. The influence of individual, double and triple cysteine substitutions of mSAASoti on fluorescent parameters and phototransformation reactions (irreversible green-to-red photoconversion and reversible photoswitching) is studied. A set of mSAASoti mutant forms (C21N, C117S, C71V, C105V, C175A, C21N/C71V, C21N/C175A, C21N/C71G/C175A) is obtained by site-directed mutagenesis. We demonstrate that the C21N variant exists in a monomeric form up to high concentrations, the C71V substitution accelerates photoconversion to the red form and the C105V variant has the maximum photoswitching rate. All C175A-containing variants demonstrate different photoswitching kinetics and decreased photostability during subsequent switching cycles compared with other considered systems. Classical molecular dynamic simulations reveal that the F177 side chain located in the vicinity of the chromophore is considerably more flexible in the mSAASoti compared with its C175A variant. This might be the explanation of the experimentally observed slowdown the thermal relaxation rate, i.e., trans–cis isomerization of the chromophore in mSAASoti upon C175A substitution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34934103</pmid><doi>10.1038/s41598-021-03634-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-12, Vol.11 (1), p.24314-24314, Article 24314
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b565d92a74ff447493bf3a65236a18ee
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/2783
631/45/56
631/57/2266
631/57/2267
Allosteric properties
Allosteric Site
Amino acids
Chromophores
Cysteine
Cysteine - chemistry
Cysteine - genetics
Humanities and Social Sciences
Isomerization
Luminescent Proteins - chemistry
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
multidisciplinary
Mutagenesis
Mutagenesis, Site-Directed
Mutation
Oxidative stress
Photochemical Processes
Point Mutation
Protein Conformation
Proteins
Rhodophyta - metabolism
Science
Science (multidisciplinary)
Site-directed mutagenesis
title The role of cysteine residues in the allosteric modulation of the chromophore phototransformations of biphotochromic fluorescent protein SAASoti
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20cysteine%20residues%20in%20the%20allosteric%20modulation%20of%20the%20chromophore%20phototransformations%20of%20biphotochromic%20fluorescent%20protein%20SAASoti&rft.jtitle=Scientific%20reports&rft.au=Gavshina,%20A.%20V.&rft.date=2021-12-21&rft.volume=11&rft.issue=1&rft.spage=24314&rft.epage=24314&rft.pages=24314-24314&rft.artnum=24314&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-03634-9&rft_dat=%3Cproquest_doaj_%3E2612224794%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-ccfa7c3ad311ba3c0290ef48e7553e5c84e9fec940feb2f837100ebb2046fb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612224794&rft_id=info:pmid/34934103&rfr_iscdi=true