Loading…

Optimization of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations

A genetic algorithm-based method is proposed to globally optimize the stacking sequence of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations. The prerequisites for the continuity between sandwich panels are first studied. To implement the summariz...

Full description

Saved in:
Bibliographic Details
Published in:Science and engineering of composite materials 2018-03, Vol.25 (2), p.229-241
Main Authors: Fan, Hai-Tao, Wang, Hai, Chen, Xiu-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A genetic algorithm-based method is proposed to globally optimize the stacking sequence of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations. The prerequisites for the continuity between sandwich panels are first studied. To implement the summarized continuity rules in the evolutionary optimization, three newly constructed chromosomes are developed to encode the global stacking sequence with no additional repair. Genetic operators, including specialized mutation, swapping and crossover operators, are also developed to effectively explore the design space and keep the continuity rules followed. The Hashin criterion and maximum stress criterion are used to evaluate the strength of sandwich panels. A typical multi-sandwich-panel composite structure with identical and different core thicknesses is optimized to verify the validity and efficiency of the proposed method. It is found that much lighter solutions are obtained with an acceptable efficiency in all cases. It is also found that the weight of the multi-sandwich-panel composite structures can be further reduced when the core thicknesses are not identical.
ISSN:0792-1233
2191-0359
DOI:10.1515/secm-2015-0171