Loading…

A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru

This study addresses the importance of conducting mass movement susceptibility mapping and hazard assessment using quantitative techniques, including machine learning, in the Northern Lima Commonwealth (NLC). A previous exploration of the topographic variables revealed a high correlation and multico...

Full description

Saved in:
Bibliographic Details
Published in:Geosciences (Basel) 2024-06, Vol.14 (6), p.168
Main Authors: Badillo-Rivera, Edwin, Olcese, Manuel, Santiago, Ramiro, Poma, Teófilo, Muñoz, Neftalí, Rojas-León, Carlos, Chávez, Teodosio, Eyzaguirre, Luz, Rodríguez, César, Oyanguren, Fernando
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 6
container_start_page 168
container_title Geosciences (Basel)
container_volume 14
creator Badillo-Rivera, Edwin
Olcese, Manuel
Santiago, Ramiro
Poma, Teófilo
Muñoz, Neftalí
Rojas-León, Carlos
Chávez, Teodosio
Eyzaguirre, Luz
Rodríguez, César
Oyanguren, Fernando
description This study addresses the importance of conducting mass movement susceptibility mapping and hazard assessment using quantitative techniques, including machine learning, in the Northern Lima Commonwealth (NLC). A previous exploration of the topographic variables revealed a high correlation and multicollinearity among some of them, which led to dimensionality reduction through a principal component analysis (PCA). Six susceptibility models were generated using weights of evidence, logistic regression, multilayer perceptron, support vector machine, random forest, and naive Bayes methods to produce quantitative susceptibility maps and assess the hazard associated with two scenarios: the first being El Niño phenomenon and the second being an earthquake exceeding 8.8 Mw. The main findings indicate that machine learning models exhibit excellent predictive performance for the presence and absence of mass movement events, as all models surpassed an AUC value of >0.9, with the random forest model standing out. In terms of hazard levels, in the event of an El Niño phenomenon or an earthquake exceeding 8.8 Mw, approximately 40% and 35% respectively, of the NLC area would be exposed to the highest hazard levels. The importance of integrating methodologies in mass movement susceptibility models is also emphasized; these methodologies include the correlation analysis, multicollinearity assessment, dimensionality reduction of variables, and coupling statistical models with machine learning models to improve the predictive accuracy of machine learning models. The findings of this research are expected to serve as a supportive tool for land managers in formulating effective disaster prevention and risk reduction strategies.
doi_str_mv 10.3390/geosciences14060168
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b5b4102c0e7e4c20b2250d210079d1d9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799387613</galeid><doaj_id>oai_doaj_org_article_b5b4102c0e7e4c20b2250d210079d1d9</doaj_id><sourcerecordid>A799387613</sourcerecordid><originalsourceid>FETCH-LOGICAL-d263t-3d6fbca2bef4da9c6dcf54350b1e89d62176cac3cb6ae71024922401cecfbb333</originalsourceid><addsrcrecordid>eNpNj02OEzEQhVsIJEbDnICNJbZk8E_H7mYXRcCMlPCjGdatsl2dOOq2G9s9KKw4BEfgZJwEh8yC2lTp1dNXr6rqJaPXQrT0zQ5DMg69wcRqKimTzZPqglMlF4JL8fS_-Xl1ldKBlmqZaER9Uf1ekXUYJ4iQ3QOSuzzbIwk9uZuTwSk77QaXjwS8JTfwA6IlfYhkCymRbXjAEX1OZDVNw9H5Hfkyg88un1lbMHvnkWwQoj9t79Hsvfs2Y_rz89ca0uO5t-RjiHmP0ZONG-GUZwz-O8KQ96_JZ4zzi-pZD0PCq8d-WX19_-5-fbPYfPpwu15tFrb8lhfCyl4b4Br72kJrpDX9shZLqhk2rZWcKWnACKMloGKU1y3nNWUGTa-1EOKyuj1zbYBDN8WSJh67AK77J4S46yBmZwbs9FLXhWAoKqwNp5rzJbWcUapay2xbWK_OrCmG08u5O4Q5-hK_E1RxwZVsmuK6Prt2UKDO9yFHKBnB4uhM8Ni7oq9U24pGSSbEX02xnag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072327688</pqid></control><display><type>article</type><title>A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru</title><source>ProQuest - Publicly Available Content Database</source><creator>Badillo-Rivera, Edwin ; Olcese, Manuel ; Santiago, Ramiro ; Poma, Teófilo ; Muñoz, Neftalí ; Rojas-León, Carlos ; Chávez, Teodosio ; Eyzaguirre, Luz ; Rodríguez, César ; Oyanguren, Fernando</creator><creatorcontrib>Badillo-Rivera, Edwin ; Olcese, Manuel ; Santiago, Ramiro ; Poma, Teófilo ; Muñoz, Neftalí ; Rojas-León, Carlos ; Chávez, Teodosio ; Eyzaguirre, Luz ; Rodríguez, César ; Oyanguren, Fernando</creatorcontrib><description>This study addresses the importance of conducting mass movement susceptibility mapping and hazard assessment using quantitative techniques, including machine learning, in the Northern Lima Commonwealth (NLC). A previous exploration of the topographic variables revealed a high correlation and multicollinearity among some of them, which led to dimensionality reduction through a principal component analysis (PCA). Six susceptibility models were generated using weights of evidence, logistic regression, multilayer perceptron, support vector machine, random forest, and naive Bayes methods to produce quantitative susceptibility maps and assess the hazard associated with two scenarios: the first being El Niño phenomenon and the second being an earthquake exceeding 8.8 Mw. The main findings indicate that machine learning models exhibit excellent predictive performance for the presence and absence of mass movement events, as all models surpassed an AUC value of &gt;0.9, with the random forest model standing out. In terms of hazard levels, in the event of an El Niño phenomenon or an earthquake exceeding 8.8 Mw, approximately 40% and 35% respectively, of the NLC area would be exposed to the highest hazard levels. The importance of integrating methodologies in mass movement susceptibility models is also emphasized; these methodologies include the correlation analysis, multicollinearity assessment, dimensionality reduction of variables, and coupling statistical models with machine learning models to improve the predictive accuracy of machine learning models. The findings of this research are expected to serve as a supportive tool for land managers in formulating effective disaster prevention and risk reduction strategies.</description><identifier>ISSN: 2076-3263</identifier><identifier>EISSN: 2076-3263</identifier><identifier>DOI: 10.3390/geosciences14060168</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Comparative analysis ; Comparative studies ; Correlation analysis ; Earth movements ; Earthquake prediction ; Earthquakes ; El Nino ; El Nino phenomena ; Emergency preparedness ; Forecasts and trends ; Geology ; Hazard assessment ; Hazardous geographic environments ; Land management ; Landslides &amp; mudslides ; Learning algorithms ; Machine learning ; Mass movement ; Methods ; Multilayer perceptrons ; Performance prediction ; principal component analysis ; Principal components analysis ; Quantitative analysis ; Regression analysis ; Risk management ; Risk reduction ; Safety and security measures ; Seismic activity ; Statistical analysis ; Statistical models ; Support vector machines ; Susceptibility ; Variables ; weight evidence</subject><ispartof>Geosciences (Basel), 2024-06, Vol.14 (6), p.168</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072327688/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072327688?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Badillo-Rivera, Edwin</creatorcontrib><creatorcontrib>Olcese, Manuel</creatorcontrib><creatorcontrib>Santiago, Ramiro</creatorcontrib><creatorcontrib>Poma, Teófilo</creatorcontrib><creatorcontrib>Muñoz, Neftalí</creatorcontrib><creatorcontrib>Rojas-León, Carlos</creatorcontrib><creatorcontrib>Chávez, Teodosio</creatorcontrib><creatorcontrib>Eyzaguirre, Luz</creatorcontrib><creatorcontrib>Rodríguez, César</creatorcontrib><creatorcontrib>Oyanguren, Fernando</creatorcontrib><title>A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru</title><title>Geosciences (Basel)</title><description>This study addresses the importance of conducting mass movement susceptibility mapping and hazard assessment using quantitative techniques, including machine learning, in the Northern Lima Commonwealth (NLC). A previous exploration of the topographic variables revealed a high correlation and multicollinearity among some of them, which led to dimensionality reduction through a principal component analysis (PCA). Six susceptibility models were generated using weights of evidence, logistic regression, multilayer perceptron, support vector machine, random forest, and naive Bayes methods to produce quantitative susceptibility maps and assess the hazard associated with two scenarios: the first being El Niño phenomenon and the second being an earthquake exceeding 8.8 Mw. The main findings indicate that machine learning models exhibit excellent predictive performance for the presence and absence of mass movement events, as all models surpassed an AUC value of &gt;0.9, with the random forest model standing out. In terms of hazard levels, in the event of an El Niño phenomenon or an earthquake exceeding 8.8 Mw, approximately 40% and 35% respectively, of the NLC area would be exposed to the highest hazard levels. The importance of integrating methodologies in mass movement susceptibility models is also emphasized; these methodologies include the correlation analysis, multicollinearity assessment, dimensionality reduction of variables, and coupling statistical models with machine learning models to improve the predictive accuracy of machine learning models. The findings of this research are expected to serve as a supportive tool for land managers in formulating effective disaster prevention and risk reduction strategies.</description><subject>Comparative analysis</subject><subject>Comparative studies</subject><subject>Correlation analysis</subject><subject>Earth movements</subject><subject>Earthquake prediction</subject><subject>Earthquakes</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>Emergency preparedness</subject><subject>Forecasts and trends</subject><subject>Geology</subject><subject>Hazard assessment</subject><subject>Hazardous geographic environments</subject><subject>Land management</subject><subject>Landslides &amp; mudslides</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mass movement</subject><subject>Methods</subject><subject>Multilayer perceptrons</subject><subject>Performance prediction</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>Quantitative analysis</subject><subject>Regression analysis</subject><subject>Risk management</subject><subject>Risk reduction</subject><subject>Safety and security measures</subject><subject>Seismic activity</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Support vector machines</subject><subject>Susceptibility</subject><subject>Variables</subject><subject>weight evidence</subject><issn>2076-3263</issn><issn>2076-3263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNj02OEzEQhVsIJEbDnICNJbZk8E_H7mYXRcCMlPCjGdatsl2dOOq2G9s9KKw4BEfgZJwEh8yC2lTp1dNXr6rqJaPXQrT0zQ5DMg69wcRqKimTzZPqglMlF4JL8fS_-Xl1ldKBlmqZaER9Uf1ekXUYJ4iQ3QOSuzzbIwk9uZuTwSk77QaXjwS8JTfwA6IlfYhkCymRbXjAEX1OZDVNw9H5Hfkyg88un1lbMHvnkWwQoj9t79Hsvfs2Y_rz89ca0uO5t-RjiHmP0ZONG-GUZwz-O8KQ96_JZ4zzi-pZD0PCq8d-WX19_-5-fbPYfPpwu15tFrb8lhfCyl4b4Br72kJrpDX9shZLqhk2rZWcKWnACKMloGKU1y3nNWUGTa-1EOKyuj1zbYBDN8WSJh67AK77J4S46yBmZwbs9FLXhWAoKqwNp5rzJbWcUapay2xbWK_OrCmG08u5O4Q5-hK_E1RxwZVsmuK6Prt2UKDO9yFHKBnB4uhM8Ni7oq9U24pGSSbEX02xnag</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Badillo-Rivera, Edwin</creator><creator>Olcese, Manuel</creator><creator>Santiago, Ramiro</creator><creator>Poma, Teófilo</creator><creator>Muñoz, Neftalí</creator><creator>Rojas-León, Carlos</creator><creator>Chávez, Teodosio</creator><creator>Eyzaguirre, Luz</creator><creator>Rodríguez, César</creator><creator>Oyanguren, Fernando</creator><general>MDPI AG</general><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20240601</creationdate><title>A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru</title><author>Badillo-Rivera, Edwin ; Olcese, Manuel ; Santiago, Ramiro ; Poma, Teófilo ; Muñoz, Neftalí ; Rojas-León, Carlos ; Chávez, Teodosio ; Eyzaguirre, Luz ; Rodríguez, César ; Oyanguren, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d263t-3d6fbca2bef4da9c6dcf54350b1e89d62176cac3cb6ae71024922401cecfbb333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Comparative analysis</topic><topic>Comparative studies</topic><topic>Correlation analysis</topic><topic>Earth movements</topic><topic>Earthquake prediction</topic><topic>Earthquakes</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>Emergency preparedness</topic><topic>Forecasts and trends</topic><topic>Geology</topic><topic>Hazard assessment</topic><topic>Hazardous geographic environments</topic><topic>Land management</topic><topic>Landslides &amp; mudslides</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mass movement</topic><topic>Methods</topic><topic>Multilayer perceptrons</topic><topic>Performance prediction</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>Quantitative analysis</topic><topic>Regression analysis</topic><topic>Risk management</topic><topic>Risk reduction</topic><topic>Safety and security measures</topic><topic>Seismic activity</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Support vector machines</topic><topic>Susceptibility</topic><topic>Variables</topic><topic>weight evidence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badillo-Rivera, Edwin</creatorcontrib><creatorcontrib>Olcese, Manuel</creatorcontrib><creatorcontrib>Santiago, Ramiro</creatorcontrib><creatorcontrib>Poma, Teófilo</creatorcontrib><creatorcontrib>Muñoz, Neftalí</creatorcontrib><creatorcontrib>Rojas-León, Carlos</creatorcontrib><creatorcontrib>Chávez, Teodosio</creatorcontrib><creatorcontrib>Eyzaguirre, Luz</creatorcontrib><creatorcontrib>Rodríguez, César</creatorcontrib><creatorcontrib>Oyanguren, Fernando</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geosciences (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badillo-Rivera, Edwin</au><au>Olcese, Manuel</au><au>Santiago, Ramiro</au><au>Poma, Teófilo</au><au>Muñoz, Neftalí</au><au>Rojas-León, Carlos</au><au>Chávez, Teodosio</au><au>Eyzaguirre, Luz</au><au>Rodríguez, César</au><au>Oyanguren, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru</atitle><jtitle>Geosciences (Basel)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>14</volume><issue>6</issue><spage>168</spage><pages>168-</pages><issn>2076-3263</issn><eissn>2076-3263</eissn><abstract>This study addresses the importance of conducting mass movement susceptibility mapping and hazard assessment using quantitative techniques, including machine learning, in the Northern Lima Commonwealth (NLC). A previous exploration of the topographic variables revealed a high correlation and multicollinearity among some of them, which led to dimensionality reduction through a principal component analysis (PCA). Six susceptibility models were generated using weights of evidence, logistic regression, multilayer perceptron, support vector machine, random forest, and naive Bayes methods to produce quantitative susceptibility maps and assess the hazard associated with two scenarios: the first being El Niño phenomenon and the second being an earthquake exceeding 8.8 Mw. The main findings indicate that machine learning models exhibit excellent predictive performance for the presence and absence of mass movement events, as all models surpassed an AUC value of &gt;0.9, with the random forest model standing out. In terms of hazard levels, in the event of an El Niño phenomenon or an earthquake exceeding 8.8 Mw, approximately 40% and 35% respectively, of the NLC area would be exposed to the highest hazard levels. The importance of integrating methodologies in mass movement susceptibility models is also emphasized; these methodologies include the correlation analysis, multicollinearity assessment, dimensionality reduction of variables, and coupling statistical models with machine learning models to improve the predictive accuracy of machine learning models. The findings of this research are expected to serve as a supportive tool for land managers in formulating effective disaster prevention and risk reduction strategies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/geosciences14060168</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3263
ispartof Geosciences (Basel), 2024-06, Vol.14 (6), p.168
issn 2076-3263
2076-3263
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b5b4102c0e7e4c20b2250d210079d1d9
source ProQuest - Publicly Available Content Database
subjects Comparative analysis
Comparative studies
Correlation analysis
Earth movements
Earthquake prediction
Earthquakes
El Nino
El Nino phenomena
Emergency preparedness
Forecasts and trends
Geology
Hazard assessment
Hazardous geographic environments
Land management
Landslides & mudslides
Learning algorithms
Machine learning
Mass movement
Methods
Multilayer perceptrons
Performance prediction
principal component analysis
Principal components analysis
Quantitative analysis
Regression analysis
Risk management
Risk reduction
Safety and security measures
Seismic activity
Statistical analysis
Statistical models
Support vector machines
Susceptibility
Variables
weight evidence
title A Comparative Study of Susceptibility and Hazard for Mass Movements Applying Quantitative Machine Learning Techniques—Case Study: Northern Lima Commonwealth, Peru
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparative%20Study%20of%20Susceptibility%20and%20Hazard%20for%20Mass%20Movements%20Applying%20Quantitative%20Machine%20Learning%20Techniques%E2%80%94Case%20Study:%20Northern%20Lima%20Commonwealth,%20Peru&rft.jtitle=Geosciences%20(Basel)&rft.au=Badillo-Rivera,%20Edwin&rft.date=2024-06-01&rft.volume=14&rft.issue=6&rft.spage=168&rft.pages=168-&rft.issn=2076-3263&rft.eissn=2076-3263&rft_id=info:doi/10.3390/geosciences14060168&rft_dat=%3Cgale_doaj_%3EA799387613%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d263t-3d6fbca2bef4da9c6dcf54350b1e89d62176cac3cb6ae71024922401cecfbb333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072327688&rft_id=info:pmid/&rft_galeid=A799387613&rfr_iscdi=true