Loading…

HPW-RX40 prevents human platelet activation by attenuating cell surface protein disulfide isomerases

Protein disulfide isomerase (PDI) present at platelet surfaces has been considered to play an important role in the conformational change and activation of the integrin glycoprotein IIb/IIIa (GPIIb/IIIa) and thus enhances platelet aggregation. Growing evidences indicated that platelet surface PDI ma...

Full description

Saved in:
Bibliographic Details
Published in:Redox biology 2017-10, Vol.13 (C), p.266-277
Main Authors: Kung, Po-Hsiung, Hsieh, Pei-Wen, Lin, Ying-Ting, Lee, Jia-Hau, Chen, I-Hua, Wu, Chin-Chung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein disulfide isomerase (PDI) present at platelet surfaces has been considered to play an important role in the conformational change and activation of the integrin glycoprotein IIb/IIIa (GPIIb/IIIa) and thus enhances platelet aggregation. Growing evidences indicated that platelet surface PDI may serve as a potential target for developing of a new class of antithrombotic agents. In the present study, we investigated the effects of HPW-RX40, a chemical derivative of β-nitrostyrene, on platelet activation and PDI activity. HPW-RX40 inhibited platelet aggregation, GPIIb/IIIa activation, and P-selectin expression in human platelets. Moreover, HPW-RX40 reduced thrombus formation in human whole blood under flow conditions, and protects mice from FeCl3-induced carotid artery occlusion. HPW-RX40 inhibited the activity of recombinant PDI family proteins (PDI, ERp57, and ERp5) as well as suppressed cell surface PDI activity of platelets in a reversible manner. Exogenous addition of PDI attenuated the inhibitory effect of HPW-RX40 on GPIIb/IIIa activation. Structure-based molecular docking simulations indicated that HPW-RX40 binds to the active site of PDI by forming hydrogen bonds. In addition, HPW-RX40 neither affected the cell viability nor induced endoplasmic reticulum stress in human cancer A549 and MDA-MB-231 cells. Taken together, our results suggest that HPW-RX40 is a reversible and non-cytotoxic PDI inhibitor with antiplatelet effects, and it may have a potential for development of novel antithrombotic agents. [Display omitted]
ISSN:2213-2317
2213-2317
DOI:10.1016/j.redox.2017.05.019