Loading…

Deep learning assisted XRF spectra classification

EDXRF spectrometry is a well-established and often-used analytical technique in examining materials from which cultural heritage objects are made. The analytical results are traditionally subjected to additional multivariate analysis for archaeometry studies to reduce the initial data’s dimensionali...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-02, Vol.14 (1), p.3666-10, Article 3666
Main Authors: Andric, Velibor, Kvascev, Goran, Cvetanovic, Milos, Stojanovic, Sasa, Bacanin, Nebojsa, Gajic-Kvascev, Maja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c492t-8888f82e83674e7aeb8a385dc7a7a143f4cba5302d89ca7395ede602db8157fc3
container_end_page 10
container_issue 1
container_start_page 3666
container_title Scientific reports
container_volume 14
creator Andric, Velibor
Kvascev, Goran
Cvetanovic, Milos
Stojanovic, Sasa
Bacanin, Nebojsa
Gajic-Kvascev, Maja
description EDXRF spectrometry is a well-established and often-used analytical technique in examining materials from which cultural heritage objects are made. The analytical results are traditionally subjected to additional multivariate analysis for archaeometry studies to reduce the initial data’s dimensionality based on informative features. Nowadays, artificial intelligence (AI) techniques are used more for this purpose. Different soft computing techniques are used to improve speed and accuracy. Choosing the most suitable AI method can increase the sustainability of the analytical process and postprocessing activities. An autoencoder neural network has been designed and used as a dimension reduction tool of initial 40 × 2048 data collected in the raw EDXRF spectra, containing information about the selected points’ elemental composition on the canvas paintings’ surface. The autoencoder network design enables the best possible reconstruction of the original EDXRF spectrum and the most informative feature extraction, which has been used for dimension reduction. Such configuration allows for efficient classification algorithms and their performances. The autoencoder neural network approach is more sustainable, especially in processing time consumption and experts’ manual work.
doi_str_mv 10.1038/s41598-024-53988-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b66243b72a6c40bbbe9ae9e494879ae2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b66243b72a6c40bbbe9ae9e494879ae2</doaj_id><sourcerecordid>2926519343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-8888f82e83674e7aeb8a385dc7a7a143f4cba5302d89ca7395ede602db8157fc3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERau2f4ADisSFS8CfsX1CqFCoVAmpKhI3a-xMFq-y8WJnK9Ffj7cppeXAXDyeeeb1x0vIS0bfMirMuyKZsqalXLZKWGPa22fkiFOpWi44f_4oPySnpaxpDcWtZPYFORRGKMZ0d0TYR8RtMyLkKU6rBkqJZca--X513pQthjlDE8Z9eYgB5pimE3IwwFjw9H49Jt_OP12ffWkvv36-OPtw2QZp-dyaGoPhaESnJWpAb0AY1QcNGpgUgwwelKC8NzaAFlZhj13desOUHoI4JheLbp9g7bY5biD_cgmiuyukvHKQ5xhGdL7ruBRec-iCpN57tIAWpZVG14xXrfeL1nbnN9gHnOq7xieiTztT_OFW6cYxajopjKwKb-4Vcvq5wzK7TSwBxxEmTLviuOWdYlZIUdHX_6DrtMtT_as9pbSmSqhK8YUKOZWScXi4DaNu77BbHHbVYXfnsLutQ68ev-Nh5I-fFRALUGprWmH-e_Z_ZH8DzMuxCw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925770535</pqid></control><display><type>article</type><title>Deep learning assisted XRF spectra classification</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Andric, Velibor ; Kvascev, Goran ; Cvetanovic, Milos ; Stojanovic, Sasa ; Bacanin, Nebojsa ; Gajic-Kvascev, Maja</creator><creatorcontrib>Andric, Velibor ; Kvascev, Goran ; Cvetanovic, Milos ; Stojanovic, Sasa ; Bacanin, Nebojsa ; Gajic-Kvascev, Maja</creatorcontrib><description>EDXRF spectrometry is a well-established and often-used analytical technique in examining materials from which cultural heritage objects are made. The analytical results are traditionally subjected to additional multivariate analysis for archaeometry studies to reduce the initial data’s dimensionality based on informative features. Nowadays, artificial intelligence (AI) techniques are used more for this purpose. Different soft computing techniques are used to improve speed and accuracy. Choosing the most suitable AI method can increase the sustainability of the analytical process and postprocessing activities. An autoencoder neural network has been designed and used as a dimension reduction tool of initial 40 × 2048 data collected in the raw EDXRF spectra, containing information about the selected points’ elemental composition on the canvas paintings’ surface. The autoencoder network design enables the best possible reconstruction of the original EDXRF spectrum and the most informative feature extraction, which has been used for dimension reduction. Such configuration allows for efficient classification algorithms and their performances. The autoencoder neural network approach is more sustainable, especially in processing time consumption and experts’ manual work.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-53988-z</identifier><identifier>PMID: 38351176</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/930/12 ; AI classification ; Artificial intelligence ; Autoencoder neural network ; Chemical composition ; Classification ; Cultural heritage ; Deep learning ; Dimension reduction ; Humanities and Social Sciences ; multidisciplinary ; Multivariate analysis ; Neural networks ; Pigments ; Science ; Science (multidisciplinary) ; Spectrometry ; XRF spectra</subject><ispartof>Scientific reports, 2024-02, Vol.14 (1), p.3666-10, Article 3666</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-8888f82e83674e7aeb8a385dc7a7a143f4cba5302d89ca7395ede602db8157fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2925770535/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2925770535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38351176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andric, Velibor</creatorcontrib><creatorcontrib>Kvascev, Goran</creatorcontrib><creatorcontrib>Cvetanovic, Milos</creatorcontrib><creatorcontrib>Stojanovic, Sasa</creatorcontrib><creatorcontrib>Bacanin, Nebojsa</creatorcontrib><creatorcontrib>Gajic-Kvascev, Maja</creatorcontrib><title>Deep learning assisted XRF spectra classification</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>EDXRF spectrometry is a well-established and often-used analytical technique in examining materials from which cultural heritage objects are made. The analytical results are traditionally subjected to additional multivariate analysis for archaeometry studies to reduce the initial data’s dimensionality based on informative features. Nowadays, artificial intelligence (AI) techniques are used more for this purpose. Different soft computing techniques are used to improve speed and accuracy. Choosing the most suitable AI method can increase the sustainability of the analytical process and postprocessing activities. An autoencoder neural network has been designed and used as a dimension reduction tool of initial 40 × 2048 data collected in the raw EDXRF spectra, containing information about the selected points’ elemental composition on the canvas paintings’ surface. The autoencoder network design enables the best possible reconstruction of the original EDXRF spectrum and the most informative feature extraction, which has been used for dimension reduction. Such configuration allows for efficient classification algorithms and their performances. The autoencoder neural network approach is more sustainable, especially in processing time consumption and experts’ manual work.</description><subject>639/166/987</subject><subject>639/301/930/12</subject><subject>AI classification</subject><subject>Artificial intelligence</subject><subject>Autoencoder neural network</subject><subject>Chemical composition</subject><subject>Classification</subject><subject>Cultural heritage</subject><subject>Deep learning</subject><subject>Dimension reduction</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Pigments</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrometry</subject><subject>XRF spectra</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi1ERau2f4ADisSFS8CfsX1CqFCoVAmpKhI3a-xMFq-y8WJnK9Ffj7cppeXAXDyeeeb1x0vIS0bfMirMuyKZsqalXLZKWGPa22fkiFOpWi44f_4oPySnpaxpDcWtZPYFORRGKMZ0d0TYR8RtMyLkKU6rBkqJZca--X513pQthjlDE8Z9eYgB5pimE3IwwFjw9H49Jt_OP12ffWkvv36-OPtw2QZp-dyaGoPhaESnJWpAb0AY1QcNGpgUgwwelKC8NzaAFlZhj13desOUHoI4JheLbp9g7bY5biD_cgmiuyukvHKQ5xhGdL7ruBRec-iCpN57tIAWpZVG14xXrfeL1nbnN9gHnOq7xieiTztT_OFW6cYxajopjKwKb-4Vcvq5wzK7TSwBxxEmTLviuOWdYlZIUdHX_6DrtMtT_as9pbSmSqhK8YUKOZWScXi4DaNu77BbHHbVYXfnsLutQ68ev-Nh5I-fFRALUGprWmH-e_Z_ZH8DzMuxCw</recordid><startdate>20240214</startdate><enddate>20240214</enddate><creator>Andric, Velibor</creator><creator>Kvascev, Goran</creator><creator>Cvetanovic, Milos</creator><creator>Stojanovic, Sasa</creator><creator>Bacanin, Nebojsa</creator><creator>Gajic-Kvascev, Maja</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240214</creationdate><title>Deep learning assisted XRF spectra classification</title><author>Andric, Velibor ; Kvascev, Goran ; Cvetanovic, Milos ; Stojanovic, Sasa ; Bacanin, Nebojsa ; Gajic-Kvascev, Maja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-8888f82e83674e7aeb8a385dc7a7a143f4cba5302d89ca7395ede602db8157fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166/987</topic><topic>639/301/930/12</topic><topic>AI classification</topic><topic>Artificial intelligence</topic><topic>Autoencoder neural network</topic><topic>Chemical composition</topic><topic>Classification</topic><topic>Cultural heritage</topic><topic>Deep learning</topic><topic>Dimension reduction</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Pigments</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrometry</topic><topic>XRF spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andric, Velibor</creatorcontrib><creatorcontrib>Kvascev, Goran</creatorcontrib><creatorcontrib>Cvetanovic, Milos</creatorcontrib><creatorcontrib>Stojanovic, Sasa</creatorcontrib><creatorcontrib>Bacanin, Nebojsa</creatorcontrib><creatorcontrib>Gajic-Kvascev, Maja</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andric, Velibor</au><au>Kvascev, Goran</au><au>Cvetanovic, Milos</au><au>Stojanovic, Sasa</au><au>Bacanin, Nebojsa</au><au>Gajic-Kvascev, Maja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning assisted XRF spectra classification</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-02-14</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>3666</spage><epage>10</epage><pages>3666-10</pages><artnum>3666</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>EDXRF spectrometry is a well-established and often-used analytical technique in examining materials from which cultural heritage objects are made. The analytical results are traditionally subjected to additional multivariate analysis for archaeometry studies to reduce the initial data’s dimensionality based on informative features. Nowadays, artificial intelligence (AI) techniques are used more for this purpose. Different soft computing techniques are used to improve speed and accuracy. Choosing the most suitable AI method can increase the sustainability of the analytical process and postprocessing activities. An autoencoder neural network has been designed and used as a dimension reduction tool of initial 40 × 2048 data collected in the raw EDXRF spectra, containing information about the selected points’ elemental composition on the canvas paintings’ surface. The autoencoder network design enables the best possible reconstruction of the original EDXRF spectrum and the most informative feature extraction, which has been used for dimension reduction. Such configuration allows for efficient classification algorithms and their performances. The autoencoder neural network approach is more sustainable, especially in processing time consumption and experts’ manual work.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38351176</pmid><doi>10.1038/s41598-024-53988-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-02, Vol.14 (1), p.3666-10, Article 3666
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b66243b72a6c40bbbe9ae9e494879ae2
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access); Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/987
639/301/930/12
AI classification
Artificial intelligence
Autoencoder neural network
Chemical composition
Classification
Cultural heritage
Deep learning
Dimension reduction
Humanities and Social Sciences
multidisciplinary
Multivariate analysis
Neural networks
Pigments
Science
Science (multidisciplinary)
Spectrometry
XRF spectra
title Deep learning assisted XRF spectra classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20assisted%20XRF%20spectra%20classification&rft.jtitle=Scientific%20reports&rft.au=Andric,%20Velibor&rft.date=2024-02-14&rft.volume=14&rft.issue=1&rft.spage=3666&rft.epage=10&rft.pages=3666-10&rft.artnum=3666&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-53988-z&rft_dat=%3Cproquest_doaj_%3E2926519343%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-8888f82e83674e7aeb8a385dc7a7a143f4cba5302d89ca7395ede602db8157fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2925770535&rft_id=info:pmid/38351176&rfr_iscdi=true