Loading…
Deep learning assisted XRF spectra classification
EDXRF spectrometry is a well-established and often-used analytical technique in examining materials from which cultural heritage objects are made. The analytical results are traditionally subjected to additional multivariate analysis for archaeometry studies to reduce the initial data’s dimensionali...
Saved in:
Published in: | Scientific reports 2024-02, Vol.14 (1), p.3666-10, Article 3666 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-8888f82e83674e7aeb8a385dc7a7a143f4cba5302d89ca7395ede602db8157fc3 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 3666 |
container_title | Scientific reports |
container_volume | 14 |
creator | Andric, Velibor Kvascev, Goran Cvetanovic, Milos Stojanovic, Sasa Bacanin, Nebojsa Gajic-Kvascev, Maja |
description | EDXRF spectrometry is a well-established and often-used analytical technique in examining materials from which cultural heritage objects are made. The analytical results are traditionally subjected to additional multivariate analysis for archaeometry studies to reduce the initial data’s dimensionality based on informative features. Nowadays, artificial intelligence (AI) techniques are used more for this purpose. Different soft computing techniques are used to improve speed and accuracy. Choosing the most suitable AI method can increase the sustainability of the analytical process and postprocessing activities. An autoencoder neural network has been designed and used as a dimension reduction tool of initial
40
×
2048
data collected in the raw EDXRF spectra, containing information about the selected points’ elemental composition on the canvas paintings’ surface. The autoencoder network design enables the best possible reconstruction of the original EDXRF spectrum and the most informative feature extraction, which has been used for dimension reduction. Such configuration allows for efficient classification algorithms and their performances. The autoencoder neural network approach is more sustainable, especially in processing time consumption and experts’ manual work. |
doi_str_mv | 10.1038/s41598-024-53988-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b66243b72a6c40bbbe9ae9e494879ae2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b66243b72a6c40bbbe9ae9e494879ae2</doaj_id><sourcerecordid>2926519343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-8888f82e83674e7aeb8a385dc7a7a143f4cba5302d89ca7395ede602db8157fc3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERau2f4ADisSFS8CfsX1CqFCoVAmpKhI3a-xMFq-y8WJnK9Ffj7cppeXAXDyeeeb1x0vIS0bfMirMuyKZsqalXLZKWGPa22fkiFOpWi44f_4oPySnpaxpDcWtZPYFORRGKMZ0d0TYR8RtMyLkKU6rBkqJZca--X513pQthjlDE8Z9eYgB5pimE3IwwFjw9H49Jt_OP12ffWkvv36-OPtw2QZp-dyaGoPhaESnJWpAb0AY1QcNGpgUgwwelKC8NzaAFlZhj13desOUHoI4JheLbp9g7bY5biD_cgmiuyukvHKQ5xhGdL7ruBRec-iCpN57tIAWpZVG14xXrfeL1nbnN9gHnOq7xieiTztT_OFW6cYxajopjKwKb-4Vcvq5wzK7TSwBxxEmTLviuOWdYlZIUdHX_6DrtMtT_as9pbSmSqhK8YUKOZWScXi4DaNu77BbHHbVYXfnsLutQ68ev-Nh5I-fFRALUGprWmH-e_Z_ZH8DzMuxCw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925770535</pqid></control><display><type>article</type><title>Deep learning assisted XRF spectra classification</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Andric, Velibor ; Kvascev, Goran ; Cvetanovic, Milos ; Stojanovic, Sasa ; Bacanin, Nebojsa ; Gajic-Kvascev, Maja</creator><creatorcontrib>Andric, Velibor ; Kvascev, Goran ; Cvetanovic, Milos ; Stojanovic, Sasa ; Bacanin, Nebojsa ; Gajic-Kvascev, Maja</creatorcontrib><description>EDXRF spectrometry is a well-established and often-used analytical technique in examining materials from which cultural heritage objects are made. The analytical results are traditionally subjected to additional multivariate analysis for archaeometry studies to reduce the initial data’s dimensionality based on informative features. Nowadays, artificial intelligence (AI) techniques are used more for this purpose. Different soft computing techniques are used to improve speed and accuracy. Choosing the most suitable AI method can increase the sustainability of the analytical process and postprocessing activities. An autoencoder neural network has been designed and used as a dimension reduction tool of initial
40
×
2048
data collected in the raw EDXRF spectra, containing information about the selected points’ elemental composition on the canvas paintings’ surface. The autoencoder network design enables the best possible reconstruction of the original EDXRF spectrum and the most informative feature extraction, which has been used for dimension reduction. Such configuration allows for efficient classification algorithms and their performances. The autoencoder neural network approach is more sustainable, especially in processing time consumption and experts’ manual work.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-53988-z</identifier><identifier>PMID: 38351176</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/930/12 ; AI classification ; Artificial intelligence ; Autoencoder neural network ; Chemical composition ; Classification ; Cultural heritage ; Deep learning ; Dimension reduction ; Humanities and Social Sciences ; multidisciplinary ; Multivariate analysis ; Neural networks ; Pigments ; Science ; Science (multidisciplinary) ; Spectrometry ; XRF spectra</subject><ispartof>Scientific reports, 2024-02, Vol.14 (1), p.3666-10, Article 3666</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-8888f82e83674e7aeb8a385dc7a7a143f4cba5302d89ca7395ede602db8157fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2925770535/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2925770535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38351176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andric, Velibor</creatorcontrib><creatorcontrib>Kvascev, Goran</creatorcontrib><creatorcontrib>Cvetanovic, Milos</creatorcontrib><creatorcontrib>Stojanovic, Sasa</creatorcontrib><creatorcontrib>Bacanin, Nebojsa</creatorcontrib><creatorcontrib>Gajic-Kvascev, Maja</creatorcontrib><title>Deep learning assisted XRF spectra classification</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>EDXRF spectrometry is a well-established and often-used analytical technique in examining materials from which cultural heritage objects are made. The analytical results are traditionally subjected to additional multivariate analysis for archaeometry studies to reduce the initial data’s dimensionality based on informative features. Nowadays, artificial intelligence (AI) techniques are used more for this purpose. Different soft computing techniques are used to improve speed and accuracy. Choosing the most suitable AI method can increase the sustainability of the analytical process and postprocessing activities. An autoencoder neural network has been designed and used as a dimension reduction tool of initial
40
×
2048
data collected in the raw EDXRF spectra, containing information about the selected points’ elemental composition on the canvas paintings’ surface. The autoencoder network design enables the best possible reconstruction of the original EDXRF spectrum and the most informative feature extraction, which has been used for dimension reduction. Such configuration allows for efficient classification algorithms and their performances. The autoencoder neural network approach is more sustainable, especially in processing time consumption and experts’ manual work.</description><subject>639/166/987</subject><subject>639/301/930/12</subject><subject>AI classification</subject><subject>Artificial intelligence</subject><subject>Autoencoder neural network</subject><subject>Chemical composition</subject><subject>Classification</subject><subject>Cultural heritage</subject><subject>Deep learning</subject><subject>Dimension reduction</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Pigments</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrometry</subject><subject>XRF spectra</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi1ERau2f4ADisSFS8CfsX1CqFCoVAmpKhI3a-xMFq-y8WJnK9Ffj7cppeXAXDyeeeb1x0vIS0bfMirMuyKZsqalXLZKWGPa22fkiFOpWi44f_4oPySnpaxpDcWtZPYFORRGKMZ0d0TYR8RtMyLkKU6rBkqJZca--X513pQthjlDE8Z9eYgB5pimE3IwwFjw9H49Jt_OP12ffWkvv36-OPtw2QZp-dyaGoPhaESnJWpAb0AY1QcNGpgUgwwelKC8NzaAFlZhj13desOUHoI4JheLbp9g7bY5biD_cgmiuyukvHKQ5xhGdL7ruBRec-iCpN57tIAWpZVG14xXrfeL1nbnN9gHnOq7xieiTztT_OFW6cYxajopjKwKb-4Vcvq5wzK7TSwBxxEmTLviuOWdYlZIUdHX_6DrtMtT_as9pbSmSqhK8YUKOZWScXi4DaNu77BbHHbVYXfnsLutQ68ev-Nh5I-fFRALUGprWmH-e_Z_ZH8DzMuxCw</recordid><startdate>20240214</startdate><enddate>20240214</enddate><creator>Andric, Velibor</creator><creator>Kvascev, Goran</creator><creator>Cvetanovic, Milos</creator><creator>Stojanovic, Sasa</creator><creator>Bacanin, Nebojsa</creator><creator>Gajic-Kvascev, Maja</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240214</creationdate><title>Deep learning assisted XRF spectra classification</title><author>Andric, Velibor ; Kvascev, Goran ; Cvetanovic, Milos ; Stojanovic, Sasa ; Bacanin, Nebojsa ; Gajic-Kvascev, Maja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-8888f82e83674e7aeb8a385dc7a7a143f4cba5302d89ca7395ede602db8157fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166/987</topic><topic>639/301/930/12</topic><topic>AI classification</topic><topic>Artificial intelligence</topic><topic>Autoencoder neural network</topic><topic>Chemical composition</topic><topic>Classification</topic><topic>Cultural heritage</topic><topic>Deep learning</topic><topic>Dimension reduction</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Pigments</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrometry</topic><topic>XRF spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andric, Velibor</creatorcontrib><creatorcontrib>Kvascev, Goran</creatorcontrib><creatorcontrib>Cvetanovic, Milos</creatorcontrib><creatorcontrib>Stojanovic, Sasa</creatorcontrib><creatorcontrib>Bacanin, Nebojsa</creatorcontrib><creatorcontrib>Gajic-Kvascev, Maja</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andric, Velibor</au><au>Kvascev, Goran</au><au>Cvetanovic, Milos</au><au>Stojanovic, Sasa</au><au>Bacanin, Nebojsa</au><au>Gajic-Kvascev, Maja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning assisted XRF spectra classification</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-02-14</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>3666</spage><epage>10</epage><pages>3666-10</pages><artnum>3666</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>EDXRF spectrometry is a well-established and often-used analytical technique in examining materials from which cultural heritage objects are made. The analytical results are traditionally subjected to additional multivariate analysis for archaeometry studies to reduce the initial data’s dimensionality based on informative features. Nowadays, artificial intelligence (AI) techniques are used more for this purpose. Different soft computing techniques are used to improve speed and accuracy. Choosing the most suitable AI method can increase the sustainability of the analytical process and postprocessing activities. An autoencoder neural network has been designed and used as a dimension reduction tool of initial
40
×
2048
data collected in the raw EDXRF spectra, containing information about the selected points’ elemental composition on the canvas paintings’ surface. The autoencoder network design enables the best possible reconstruction of the original EDXRF spectrum and the most informative feature extraction, which has been used for dimension reduction. Such configuration allows for efficient classification algorithms and their performances. The autoencoder neural network approach is more sustainable, especially in processing time consumption and experts’ manual work.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38351176</pmid><doi>10.1038/s41598-024-53988-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-02, Vol.14 (1), p.3666-10, Article 3666 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b66243b72a6c40bbbe9ae9e494879ae2 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access); Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166/987 639/301/930/12 AI classification Artificial intelligence Autoencoder neural network Chemical composition Classification Cultural heritage Deep learning Dimension reduction Humanities and Social Sciences multidisciplinary Multivariate analysis Neural networks Pigments Science Science (multidisciplinary) Spectrometry XRF spectra |
title | Deep learning assisted XRF spectra classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20assisted%20XRF%20spectra%20classification&rft.jtitle=Scientific%20reports&rft.au=Andric,%20Velibor&rft.date=2024-02-14&rft.volume=14&rft.issue=1&rft.spage=3666&rft.epage=10&rft.pages=3666-10&rft.artnum=3666&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-53988-z&rft_dat=%3Cproquest_doaj_%3E2926519343%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-8888f82e83674e7aeb8a385dc7a7a143f4cba5302d89ca7395ede602db8157fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2925770535&rft_id=info:pmid/38351176&rfr_iscdi=true |