Loading…

Moderate Increase in TCO2 Enhances Photosynthesis of Seagrass Zostera japonica, but Not Zostera marina: Implications for Acidification Mitigation

Photosynthesis and respiration are vital biological processes that shape the diurnal variability of carbonate chemistry in nearshore waters, presumably ameliorating (daytime) or exacerbating (nighttime) short-term acidification events, which are expected to increase in severity with ocean acidificat...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in Marine Science 2017-07, Vol.4
Main Authors: Miller, Cale A., Yang, Sylvia, Love, Brooke A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-75ba7bd7a4f892b4df40d1414e6bfcd829987a6618b20b249b2b946d67e72f7d3
cites cdi_FETCH-LOGICAL-c379t-75ba7bd7a4f892b4df40d1414e6bfcd829987a6618b20b249b2b946d67e72f7d3
container_end_page
container_issue
container_start_page
container_title Frontiers in Marine Science
container_volume 4
creator Miller, Cale A.
Yang, Sylvia
Love, Brooke A.
description Photosynthesis and respiration are vital biological processes that shape the diurnal variability of carbonate chemistry in nearshore waters, presumably ameliorating (daytime) or exacerbating (nighttime) short-term acidification events, which are expected to increase in severity with ocean acidification (OA). Biogenic habitats such as seagrass beds have the capacity to reduce CO2 concentration and potentially provide refugia from OA. Further, some seagrasses have been shown to increase their photosynthetic rate in response to enriched total CO2 (TCO2). Therefore, the ability of seagrass to mitigate OA may increase as concentrations of TCO2 increase. In this study, we exposed native Zostera marina and non-native Zostera japonica seagrasses from Padilla Bay, WA (USA) to various levels of irradiance and TCO2. Our results indicate that the average maximum net photosynthetic rate (Pmax) for Z. japonica as a function of irradiance and TCO2 was 3x greater than Z. marina when standardized to chlorophyll (360 ± 33 μmol TCO2 mg chl-1 h-1 and 113 ± 10 μmol TCO2 mg chl-1 h-1, respectively). Additionally, Z. japonica increased its Pmax ~50% when TCO2 increased from ~1770 to 2051 μmol TCO2 kg-1. In contrast, Z. marina did not display an increase in Pmax with higher TCO2, possibly due to the variance of photosynthetic rates at saturating irradiance within TCO2 treatments (coefficient of variation: 30–60%) relative to the range of TCO2 tested. Our results suggest that Z. japonica can affect the OA mitigation potential of seagrass beds, and its contribution may increase relative to Z. marina as oceanic TCO2 rises. Further, we extended our empirical results to incorporate various biomass to water volume ratios in order to conceptualize how these additional attributes affect changes in carbonate chemistry. Estimates show that the change in TCO2 via photosynthetic carbon uptake as modeled in this study can produce positive diurnal changes in pH and aragonite saturation state that are on the same order of magnitude as those estimated for whole seagrass systems. Based on our results, we predict that seagrasses Z. marina and Z. japonica both have the potential to produce short-term changes in carbonate chemistry thus offsetting anthropogenic acidification when irradiance is saturating.
doi_str_mv 10.3389/fmars.2017.00228
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b665c64a6a364d78b10c20f1b31d177d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b665c64a6a364d78b10c20f1b31d177d</doaj_id><sourcerecordid>2307750203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-75ba7bd7a4f892b4df40d1414e6bfcd829987a6618b20b249b2b946d67e72f7d3</originalsourceid><addsrcrecordid>eNpNUctOWzEUvKpAKgL2LC112wS_rn3dHYqgjcRLKt2wsY5fiaNgp7az4DP6x73cIMTqjObMmTPSdN0FwXPGBnUZXqDUOcVEzjGmdPjSnVCqxExK3h99wl-781o3GGPCOO65Oun-3WXnCzSPlskWD9WjmNDT4oGi67SGZH1Fj-vccn1Nbe1rrCgH9NvDqkCt6DnXNp6jDexyiha-I7Nv6D63j82YLCb4gZYvu-0oaDGnikIu6MpGF8M7he5ii6sJnnXHAbbVn7_P0-7PzfXT4tfs9uHncnF1O7NMqjaTvQFpnAQeBkUNd4FjRzjhXphg3UCVGiQIQQZDsaFcGWoUF05IL2mQjp12y4Ovy7DRuxLHpK86Q9QTkctKQ2nRbr02QvRWcBDABHdyMARbigMxjDgiJ69vB69dyX_3vja9yfuSxviaMixljylmowofVLbkWosPH18J1m896qlH_dajnnpk_wH5DJLL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307750203</pqid></control><display><type>article</type><title>Moderate Increase in TCO2 Enhances Photosynthesis of Seagrass Zostera japonica, but Not Zostera marina: Implications for Acidification Mitigation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Miller, Cale A. ; Yang, Sylvia ; Love, Brooke A.</creator><creatorcontrib>Miller, Cale A. ; Yang, Sylvia ; Love, Brooke A.</creatorcontrib><description>Photosynthesis and respiration are vital biological processes that shape the diurnal variability of carbonate chemistry in nearshore waters, presumably ameliorating (daytime) or exacerbating (nighttime) short-term acidification events, which are expected to increase in severity with ocean acidification (OA). Biogenic habitats such as seagrass beds have the capacity to reduce CO2 concentration and potentially provide refugia from OA. Further, some seagrasses have been shown to increase their photosynthetic rate in response to enriched total CO2 (TCO2). Therefore, the ability of seagrass to mitigate OA may increase as concentrations of TCO2 increase. In this study, we exposed native Zostera marina and non-native Zostera japonica seagrasses from Padilla Bay, WA (USA) to various levels of irradiance and TCO2. Our results indicate that the average maximum net photosynthetic rate (Pmax) for Z. japonica as a function of irradiance and TCO2 was 3x greater than Z. marina when standardized to chlorophyll (360 ± 33 μmol TCO2 mg chl-1 h-1 and 113 ± 10 μmol TCO2 mg chl-1 h-1, respectively). Additionally, Z. japonica increased its Pmax ~50% when TCO2 increased from ~1770 to 2051 μmol TCO2 kg-1. In contrast, Z. marina did not display an increase in Pmax with higher TCO2, possibly due to the variance of photosynthetic rates at saturating irradiance within TCO2 treatments (coefficient of variation: 30–60%) relative to the range of TCO2 tested. Our results suggest that Z. japonica can affect the OA mitigation potential of seagrass beds, and its contribution may increase relative to Z. marina as oceanic TCO2 rises. Further, we extended our empirical results to incorporate various biomass to water volume ratios in order to conceptualize how these additional attributes affect changes in carbonate chemistry. Estimates show that the change in TCO2 via photosynthetic carbon uptake as modeled in this study can produce positive diurnal changes in pH and aragonite saturation state that are on the same order of magnitude as those estimated for whole seagrass systems. Based on our results, we predict that seagrasses Z. marina and Z. japonica both have the potential to produce short-term changes in carbonate chemistry thus offsetting anthropogenic acidification when irradiance is saturating.</description><identifier>ISSN: 2296-7745</identifier><identifier>EISSN: 2296-7745</identifier><identifier>DOI: 10.3389/fmars.2017.00228</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>Acidification ; Anthropogenic factors ; Aragonite ; Calcification ; Carbon dioxide ; Carbonates ; Chemistry ; Chlorophyll ; Chlorophylls ; Coefficient of variation ; Diurnal ; Eutrophication ; Irradiance ; Mitigation ; ocean acidification ; Organisms ; Photosynthesis ; photosynthetic potential ; Ratios ; Refugia ; Respiration ; Salinity ; Saturation ; Sea grasses ; seagrass ; Seagrasses ; Seawater ; Short-term changes ; Uptake ; Volume transport ; Zostera japonica ; Zostera marina</subject><ispartof>Frontiers in Marine Science, 2017-07, Vol.4</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-75ba7bd7a4f892b4df40d1414e6bfcd829987a6618b20b249b2b946d67e72f7d3</citedby><cites>FETCH-LOGICAL-c379t-75ba7bd7a4f892b4df40d1414e6bfcd829987a6618b20b249b2b946d67e72f7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2307750203/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2307750203?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Miller, Cale A.</creatorcontrib><creatorcontrib>Yang, Sylvia</creatorcontrib><creatorcontrib>Love, Brooke A.</creatorcontrib><title>Moderate Increase in TCO2 Enhances Photosynthesis of Seagrass Zostera japonica, but Not Zostera marina: Implications for Acidification Mitigation</title><title>Frontiers in Marine Science</title><description>Photosynthesis and respiration are vital biological processes that shape the diurnal variability of carbonate chemistry in nearshore waters, presumably ameliorating (daytime) or exacerbating (nighttime) short-term acidification events, which are expected to increase in severity with ocean acidification (OA). Biogenic habitats such as seagrass beds have the capacity to reduce CO2 concentration and potentially provide refugia from OA. Further, some seagrasses have been shown to increase their photosynthetic rate in response to enriched total CO2 (TCO2). Therefore, the ability of seagrass to mitigate OA may increase as concentrations of TCO2 increase. In this study, we exposed native Zostera marina and non-native Zostera japonica seagrasses from Padilla Bay, WA (USA) to various levels of irradiance and TCO2. Our results indicate that the average maximum net photosynthetic rate (Pmax) for Z. japonica as a function of irradiance and TCO2 was 3x greater than Z. marina when standardized to chlorophyll (360 ± 33 μmol TCO2 mg chl-1 h-1 and 113 ± 10 μmol TCO2 mg chl-1 h-1, respectively). Additionally, Z. japonica increased its Pmax ~50% when TCO2 increased from ~1770 to 2051 μmol TCO2 kg-1. In contrast, Z. marina did not display an increase in Pmax with higher TCO2, possibly due to the variance of photosynthetic rates at saturating irradiance within TCO2 treatments (coefficient of variation: 30–60%) relative to the range of TCO2 tested. Our results suggest that Z. japonica can affect the OA mitigation potential of seagrass beds, and its contribution may increase relative to Z. marina as oceanic TCO2 rises. Further, we extended our empirical results to incorporate various biomass to water volume ratios in order to conceptualize how these additional attributes affect changes in carbonate chemistry. Estimates show that the change in TCO2 via photosynthetic carbon uptake as modeled in this study can produce positive diurnal changes in pH and aragonite saturation state that are on the same order of magnitude as those estimated for whole seagrass systems. Based on our results, we predict that seagrasses Z. marina and Z. japonica both have the potential to produce short-term changes in carbonate chemistry thus offsetting anthropogenic acidification when irradiance is saturating.</description><subject>Acidification</subject><subject>Anthropogenic factors</subject><subject>Aragonite</subject><subject>Calcification</subject><subject>Carbon dioxide</subject><subject>Carbonates</subject><subject>Chemistry</subject><subject>Chlorophyll</subject><subject>Chlorophylls</subject><subject>Coefficient of variation</subject><subject>Diurnal</subject><subject>Eutrophication</subject><subject>Irradiance</subject><subject>Mitigation</subject><subject>ocean acidification</subject><subject>Organisms</subject><subject>Photosynthesis</subject><subject>photosynthetic potential</subject><subject>Ratios</subject><subject>Refugia</subject><subject>Respiration</subject><subject>Salinity</subject><subject>Saturation</subject><subject>Sea grasses</subject><subject>seagrass</subject><subject>Seagrasses</subject><subject>Seawater</subject><subject>Short-term changes</subject><subject>Uptake</subject><subject>Volume transport</subject><subject>Zostera japonica</subject><subject>Zostera marina</subject><issn>2296-7745</issn><issn>2296-7745</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOWzEUvKpAKgL2LC112wS_rn3dHYqgjcRLKt2wsY5fiaNgp7az4DP6x73cIMTqjObMmTPSdN0FwXPGBnUZXqDUOcVEzjGmdPjSnVCqxExK3h99wl-781o3GGPCOO65Oun-3WXnCzSPlskWD9WjmNDT4oGi67SGZH1Fj-vccn1Nbe1rrCgH9NvDqkCt6DnXNp6jDexyiha-I7Nv6D63j82YLCb4gZYvu-0oaDGnikIu6MpGF8M7he5ii6sJnnXHAbbVn7_P0-7PzfXT4tfs9uHncnF1O7NMqjaTvQFpnAQeBkUNd4FjRzjhXphg3UCVGiQIQQZDsaFcGWoUF05IL2mQjp12y4Ovy7DRuxLHpK86Q9QTkctKQ2nRbr02QvRWcBDABHdyMARbigMxjDgiJ69vB69dyX_3vja9yfuSxviaMixljylmowofVLbkWosPH18J1m896qlH_dajnnpk_wH5DJLL</recordid><startdate>20170720</startdate><enddate>20170720</enddate><creator>Miller, Cale A.</creator><creator>Yang, Sylvia</creator><creator>Love, Brooke A.</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20170720</creationdate><title>Moderate Increase in TCO2 Enhances Photosynthesis of Seagrass Zostera japonica, but Not Zostera marina: Implications for Acidification Mitigation</title><author>Miller, Cale A. ; Yang, Sylvia ; Love, Brooke A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-75ba7bd7a4f892b4df40d1414e6bfcd829987a6618b20b249b2b946d67e72f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidification</topic><topic>Anthropogenic factors</topic><topic>Aragonite</topic><topic>Calcification</topic><topic>Carbon dioxide</topic><topic>Carbonates</topic><topic>Chemistry</topic><topic>Chlorophyll</topic><topic>Chlorophylls</topic><topic>Coefficient of variation</topic><topic>Diurnal</topic><topic>Eutrophication</topic><topic>Irradiance</topic><topic>Mitigation</topic><topic>ocean acidification</topic><topic>Organisms</topic><topic>Photosynthesis</topic><topic>photosynthetic potential</topic><topic>Ratios</topic><topic>Refugia</topic><topic>Respiration</topic><topic>Salinity</topic><topic>Saturation</topic><topic>Sea grasses</topic><topic>seagrass</topic><topic>Seagrasses</topic><topic>Seawater</topic><topic>Short-term changes</topic><topic>Uptake</topic><topic>Volume transport</topic><topic>Zostera japonica</topic><topic>Zostera marina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Cale A.</creatorcontrib><creatorcontrib>Yang, Sylvia</creatorcontrib><creatorcontrib>Love, Brooke A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in Marine Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Cale A.</au><au>Yang, Sylvia</au><au>Love, Brooke A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moderate Increase in TCO2 Enhances Photosynthesis of Seagrass Zostera japonica, but Not Zostera marina: Implications for Acidification Mitigation</atitle><jtitle>Frontiers in Marine Science</jtitle><date>2017-07-20</date><risdate>2017</risdate><volume>4</volume><issn>2296-7745</issn><eissn>2296-7745</eissn><abstract>Photosynthesis and respiration are vital biological processes that shape the diurnal variability of carbonate chemistry in nearshore waters, presumably ameliorating (daytime) or exacerbating (nighttime) short-term acidification events, which are expected to increase in severity with ocean acidification (OA). Biogenic habitats such as seagrass beds have the capacity to reduce CO2 concentration and potentially provide refugia from OA. Further, some seagrasses have been shown to increase their photosynthetic rate in response to enriched total CO2 (TCO2). Therefore, the ability of seagrass to mitigate OA may increase as concentrations of TCO2 increase. In this study, we exposed native Zostera marina and non-native Zostera japonica seagrasses from Padilla Bay, WA (USA) to various levels of irradiance and TCO2. Our results indicate that the average maximum net photosynthetic rate (Pmax) for Z. japonica as a function of irradiance and TCO2 was 3x greater than Z. marina when standardized to chlorophyll (360 ± 33 μmol TCO2 mg chl-1 h-1 and 113 ± 10 μmol TCO2 mg chl-1 h-1, respectively). Additionally, Z. japonica increased its Pmax ~50% when TCO2 increased from ~1770 to 2051 μmol TCO2 kg-1. In contrast, Z. marina did not display an increase in Pmax with higher TCO2, possibly due to the variance of photosynthetic rates at saturating irradiance within TCO2 treatments (coefficient of variation: 30–60%) relative to the range of TCO2 tested. Our results suggest that Z. japonica can affect the OA mitigation potential of seagrass beds, and its contribution may increase relative to Z. marina as oceanic TCO2 rises. Further, we extended our empirical results to incorporate various biomass to water volume ratios in order to conceptualize how these additional attributes affect changes in carbonate chemistry. Estimates show that the change in TCO2 via photosynthetic carbon uptake as modeled in this study can produce positive diurnal changes in pH and aragonite saturation state that are on the same order of magnitude as those estimated for whole seagrass systems. Based on our results, we predict that seagrasses Z. marina and Z. japonica both have the potential to produce short-term changes in carbonate chemistry thus offsetting anthropogenic acidification when irradiance is saturating.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><doi>10.3389/fmars.2017.00228</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-7745
ispartof Frontiers in Marine Science, 2017-07, Vol.4
issn 2296-7745
2296-7745
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b665c64a6a364d78b10c20f1b31d177d
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Acidification
Anthropogenic factors
Aragonite
Calcification
Carbon dioxide
Carbonates
Chemistry
Chlorophyll
Chlorophylls
Coefficient of variation
Diurnal
Eutrophication
Irradiance
Mitigation
ocean acidification
Organisms
Photosynthesis
photosynthetic potential
Ratios
Refugia
Respiration
Salinity
Saturation
Sea grasses
seagrass
Seagrasses
Seawater
Short-term changes
Uptake
Volume transport
Zostera japonica
Zostera marina
title Moderate Increase in TCO2 Enhances Photosynthesis of Seagrass Zostera japonica, but Not Zostera marina: Implications for Acidification Mitigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moderate%20Increase%20in%20TCO2%20Enhances%20Photosynthesis%20of%20Seagrass%20Zostera%20japonica,%20but%20Not%20Zostera%20marina:%20Implications%20for%20Acidification%20Mitigation&rft.jtitle=Frontiers%20in%20Marine%20Science&rft.au=Miller,%20Cale%20A.&rft.date=2017-07-20&rft.volume=4&rft.issn=2296-7745&rft.eissn=2296-7745&rft_id=info:doi/10.3389/fmars.2017.00228&rft_dat=%3Cproquest_doaj_%3E2307750203%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-75ba7bd7a4f892b4df40d1414e6bfcd829987a6618b20b249b2b946d67e72f7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307750203&rft_id=info:pmid/&rfr_iscdi=true