Loading…
Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites
In this paper, a new method of replacing the conventional honeycomb aluminum panel with 3D metal printing on the microsatellite is presented. The multiobjective optimization method is used to optimize the temperature difference, compression strength, shear strength, and weight of the new type of sol...
Saved in:
Published in: | International journal of aerospace engineering 2019-01, Vol.2019 (2019), p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83 |
container_end_page | 14 |
container_issue | 2019 |
container_start_page | 1 |
container_title | International journal of aerospace engineering |
container_volume | 2019 |
creator | Teng, L. Jin, Zh. H. Zheng, X. D. |
description | In this paper, a new method of replacing the conventional honeycomb aluminum panel with 3D metal printing on the microsatellite is presented. The multiobjective optimization method is used to optimize the temperature difference, compression strength, shear strength, and weight of the new type of solar panel structure. The relationships between the structural parameters and optimization targets are established, and the influence of five factors on thermal and structural properties is analyzed. Finally, a group of better structural parameters of the panel is obtained. The relative deviations between simulation analysis and model are 27.45%, 6.12%, 1.365%, and 3.27%, respectively. The optimization results show that the regression model can be used to predict thermal and structural properties of the panel, and the establishment of the model is effective. The analysis results show that the performances can be improved by 91.62%, 46.94%, 17.91%, and 10.28%, respectively. The optimized results are used for 3D metal printing, and the new type of solar panel is obtained. It is proved that the method can effectively improve the thermal and structural properties of the panel and can effectively shorten the development and manufacture cycle of the panel and also reduce the cost. It has high engineering application value. |
doi_str_mv | 10.1155/2019/2846491 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b67b60a6744d4022a82751a1b855a0e7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b67b60a6744d4022a82751a1b855a0e7</doaj_id><sourcerecordid>2189480856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83</originalsourceid><addsrcrecordid>eNqFkUlLBDEQhRtRcL15loBHHU3SWY8ibuAGLgcvobq7ohl6OmO6RfTXm7FFj55q4eO9Kl5RbDN6wJiUh5wye8iNUMKypWKNKaMn0mqx_NsrtVqs9_2UUkWllmvF0y0mH9MMuhrJzXwIs_AJQ4gdga4hj5iCD_W4iJ4AucZ3cv8xx8V0F1tI5BY6bEnWIFehTrGHAds2DNhvFise2h63fupG8XB6cn98Prm8Obs4Prqc1PmCYVIKpcEYrnOtUDbaYg2mVKzhshTcWjTe01qCrS2T1JbectGg0JqZSlWm3CguRt0mwtTNU5hB-nARgvtexPTsIA2hbtFV2UJRUFqIRlDOIdtKBqwyUgJFnbV2R615iq9v2A9uGt9Sl893nBkrDDVSZWp_pBb_9gn9ryujbpGEWyThfpLI-N6Iv4SugffwH70z0pgZ9PBHM6l4Br4AoD6P-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189480856</pqid></control><display><type>article</type><title>Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Teng, L. ; Jin, Zh. H. ; Zheng, X. D.</creator><contributor>Damaren, Christopher J. ; Christopher J Damaren</contributor><creatorcontrib>Teng, L. ; Jin, Zh. H. ; Zheng, X. D. ; Damaren, Christopher J. ; Christopher J Damaren</creatorcontrib><description>In this paper, a new method of replacing the conventional honeycomb aluminum panel with 3D metal printing on the microsatellite is presented. The multiobjective optimization method is used to optimize the temperature difference, compression strength, shear strength, and weight of the new type of solar panel structure. The relationships between the structural parameters and optimization targets are established, and the influence of five factors on thermal and structural properties is analyzed. Finally, a group of better structural parameters of the panel is obtained. The relative deviations between simulation analysis and model are 27.45%, 6.12%, 1.365%, and 3.27%, respectively. The optimization results show that the regression model can be used to predict thermal and structural properties of the panel, and the establishment of the model is effective. The analysis results show that the performances can be improved by 91.62%, 46.94%, 17.91%, and 10.28%, respectively. The optimized results are used for 3D metal printing, and the new type of solar panel is obtained. It is proved that the method can effectively improve the thermal and structural properties of the panel and can effectively shorten the development and manufacture cycle of the panel and also reduce the cost. It has high engineering application value.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2019/2846491</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>3-D printers ; Additive manufacturing ; Aerospace engineering ; Aluminum ; Composite materials ; Compressive strength ; Computer simulation ; Crack propagation ; Heat conductivity ; Honeycomb construction ; Load ; Metal forming ; Microsatellites ; Multiple objective analysis ; Optimization ; Parameters ; Performance enhancement ; Product design ; Properties (attributes) ; Regression analysis ; Regression models ; Shear strength ; Solar panels ; Stress concentration ; Temperature gradients ; Three dimensional printing ; Weight</subject><ispartof>International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-14</ispartof><rights>Copyright © 2019 L. Teng et al.</rights><rights>Copyright © 2019 L. Teng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83</citedby><cites>FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83</cites><orcidid>0000-0003-0329-5302 ; 0000-0003-2685-9844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2189480856/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2189480856?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><contributor>Damaren, Christopher J.</contributor><contributor>Christopher J Damaren</contributor><creatorcontrib>Teng, L.</creatorcontrib><creatorcontrib>Jin, Zh. H.</creatorcontrib><creatorcontrib>Zheng, X. D.</creatorcontrib><title>Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites</title><title>International journal of aerospace engineering</title><description>In this paper, a new method of replacing the conventional honeycomb aluminum panel with 3D metal printing on the microsatellite is presented. The multiobjective optimization method is used to optimize the temperature difference, compression strength, shear strength, and weight of the new type of solar panel structure. The relationships between the structural parameters and optimization targets are established, and the influence of five factors on thermal and structural properties is analyzed. Finally, a group of better structural parameters of the panel is obtained. The relative deviations between simulation analysis and model are 27.45%, 6.12%, 1.365%, and 3.27%, respectively. The optimization results show that the regression model can be used to predict thermal and structural properties of the panel, and the establishment of the model is effective. The analysis results show that the performances can be improved by 91.62%, 46.94%, 17.91%, and 10.28%, respectively. The optimized results are used for 3D metal printing, and the new type of solar panel is obtained. It is proved that the method can effectively improve the thermal and structural properties of the panel and can effectively shorten the development and manufacture cycle of the panel and also reduce the cost. It has high engineering application value.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Aerospace engineering</subject><subject>Aluminum</subject><subject>Composite materials</subject><subject>Compressive strength</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Heat conductivity</subject><subject>Honeycomb construction</subject><subject>Load</subject><subject>Metal forming</subject><subject>Microsatellites</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance enhancement</subject><subject>Product design</subject><subject>Properties (attributes)</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Shear strength</subject><subject>Solar panels</subject><subject>Stress concentration</subject><subject>Temperature gradients</subject><subject>Three dimensional printing</subject><subject>Weight</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkUlLBDEQhRtRcL15loBHHU3SWY8ibuAGLgcvobq7ohl6OmO6RfTXm7FFj55q4eO9Kl5RbDN6wJiUh5wye8iNUMKypWKNKaMn0mqx_NsrtVqs9_2UUkWllmvF0y0mH9MMuhrJzXwIs_AJQ4gdga4hj5iCD_W4iJ4AucZ3cv8xx8V0F1tI5BY6bEnWIFehTrGHAds2DNhvFise2h63fupG8XB6cn98Prm8Obs4Prqc1PmCYVIKpcEYrnOtUDbaYg2mVKzhshTcWjTe01qCrS2T1JbectGg0JqZSlWm3CguRt0mwtTNU5hB-nARgvtexPTsIA2hbtFV2UJRUFqIRlDOIdtKBqwyUgJFnbV2R615iq9v2A9uGt9Sl893nBkrDDVSZWp_pBb_9gn9ryujbpGEWyThfpLI-N6Iv4SugffwH70z0pgZ9PBHM6l4Br4AoD6P-Q</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Teng, L.</creator><creator>Jin, Zh. H.</creator><creator>Zheng, X. D.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0329-5302</orcidid><orcidid>https://orcid.org/0000-0003-2685-9844</orcidid></search><sort><creationdate>20190101</creationdate><title>Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites</title><author>Teng, L. ; Jin, Zh. H. ; Zheng, X. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Aerospace engineering</topic><topic>Aluminum</topic><topic>Composite materials</topic><topic>Compressive strength</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Heat conductivity</topic><topic>Honeycomb construction</topic><topic>Load</topic><topic>Metal forming</topic><topic>Microsatellites</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance enhancement</topic><topic>Product design</topic><topic>Properties (attributes)</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Shear strength</topic><topic>Solar panels</topic><topic>Stress concentration</topic><topic>Temperature gradients</topic><topic>Three dimensional printing</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teng, L.</creatorcontrib><creatorcontrib>Jin, Zh. H.</creatorcontrib><creatorcontrib>Zheng, X. D.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teng, L.</au><au>Jin, Zh. H.</au><au>Zheng, X. D.</au><au>Damaren, Christopher J.</au><au>Christopher J Damaren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>In this paper, a new method of replacing the conventional honeycomb aluminum panel with 3D metal printing on the microsatellite is presented. The multiobjective optimization method is used to optimize the temperature difference, compression strength, shear strength, and weight of the new type of solar panel structure. The relationships between the structural parameters and optimization targets are established, and the influence of five factors on thermal and structural properties is analyzed. Finally, a group of better structural parameters of the panel is obtained. The relative deviations between simulation analysis and model are 27.45%, 6.12%, 1.365%, and 3.27%, respectively. The optimization results show that the regression model can be used to predict thermal and structural properties of the panel, and the establishment of the model is effective. The analysis results show that the performances can be improved by 91.62%, 46.94%, 17.91%, and 10.28%, respectively. The optimized results are used for 3D metal printing, and the new type of solar panel is obtained. It is proved that the method can effectively improve the thermal and structural properties of the panel and can effectively shorten the development and manufacture cycle of the panel and also reduce the cost. It has high engineering application value.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/2846491</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0329-5302</orcidid><orcidid>https://orcid.org/0000-0003-2685-9844</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5966 |
ispartof | International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-14 |
issn | 1687-5966 1687-5974 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b67b60a6744d4022a82751a1b855a0e7 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | 3-D printers Additive manufacturing Aerospace engineering Aluminum Composite materials Compressive strength Computer simulation Crack propagation Heat conductivity Honeycomb construction Load Metal forming Microsatellites Multiple objective analysis Optimization Parameters Performance enhancement Product design Properties (attributes) Regression analysis Regression models Shear strength Solar panels Stress concentration Temperature gradients Three dimensional printing Weight |
title | Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Optimization%20and%20Verification%20of%20a%20New%20Type%20of%20Solar%20Panel%20for%20Microsatellites&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Teng,%20L.&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2019/2846491&rft_dat=%3Cproquest_doaj_%3E2189480856%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2189480856&rft_id=info:pmid/&rfr_iscdi=true |