Loading…

Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites

In this paper, a new method of replacing the conventional honeycomb aluminum panel with 3D metal printing on the microsatellite is presented. The multiobjective optimization method is used to optimize the temperature difference, compression strength, shear strength, and weight of the new type of sol...

Full description

Saved in:
Bibliographic Details
Published in:International journal of aerospace engineering 2019-01, Vol.2019 (2019), p.1-14
Main Authors: Teng, L., Jin, Zh. H., Zheng, X. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83
cites cdi_FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83
container_end_page 14
container_issue 2019
container_start_page 1
container_title International journal of aerospace engineering
container_volume 2019
creator Teng, L.
Jin, Zh. H.
Zheng, X. D.
description In this paper, a new method of replacing the conventional honeycomb aluminum panel with 3D metal printing on the microsatellite is presented. The multiobjective optimization method is used to optimize the temperature difference, compression strength, shear strength, and weight of the new type of solar panel structure. The relationships between the structural parameters and optimization targets are established, and the influence of five factors on thermal and structural properties is analyzed. Finally, a group of better structural parameters of the panel is obtained. The relative deviations between simulation analysis and model are 27.45%, 6.12%, 1.365%, and 3.27%, respectively. The optimization results show that the regression model can be used to predict thermal and structural properties of the panel, and the establishment of the model is effective. The analysis results show that the performances can be improved by 91.62%, 46.94%, 17.91%, and 10.28%, respectively. The optimized results are used for 3D metal printing, and the new type of solar panel is obtained. It is proved that the method can effectively improve the thermal and structural properties of the panel and can effectively shorten the development and manufacture cycle of the panel and also reduce the cost. It has high engineering application value.
doi_str_mv 10.1155/2019/2846491
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b67b60a6744d4022a82751a1b855a0e7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b67b60a6744d4022a82751a1b855a0e7</doaj_id><sourcerecordid>2189480856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83</originalsourceid><addsrcrecordid>eNqFkUlLBDEQhRtRcL15loBHHU3SWY8ibuAGLgcvobq7ohl6OmO6RfTXm7FFj55q4eO9Kl5RbDN6wJiUh5wye8iNUMKypWKNKaMn0mqx_NsrtVqs9_2UUkWllmvF0y0mH9MMuhrJzXwIs_AJQ4gdga4hj5iCD_W4iJ4AucZ3cv8xx8V0F1tI5BY6bEnWIFehTrGHAds2DNhvFise2h63fupG8XB6cn98Prm8Obs4Prqc1PmCYVIKpcEYrnOtUDbaYg2mVKzhshTcWjTe01qCrS2T1JbectGg0JqZSlWm3CguRt0mwtTNU5hB-nARgvtexPTsIA2hbtFV2UJRUFqIRlDOIdtKBqwyUgJFnbV2R615iq9v2A9uGt9Sl893nBkrDDVSZWp_pBb_9gn9ryujbpGEWyThfpLI-N6Iv4SugffwH70z0pgZ9PBHM6l4Br4AoD6P-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189480856</pqid></control><display><type>article</type><title>Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Teng, L. ; Jin, Zh. H. ; Zheng, X. D.</creator><contributor>Damaren, Christopher J. ; Christopher J Damaren</contributor><creatorcontrib>Teng, L. ; Jin, Zh. H. ; Zheng, X. D. ; Damaren, Christopher J. ; Christopher J Damaren</creatorcontrib><description>In this paper, a new method of replacing the conventional honeycomb aluminum panel with 3D metal printing on the microsatellite is presented. The multiobjective optimization method is used to optimize the temperature difference, compression strength, shear strength, and weight of the new type of solar panel structure. The relationships between the structural parameters and optimization targets are established, and the influence of five factors on thermal and structural properties is analyzed. Finally, a group of better structural parameters of the panel is obtained. The relative deviations between simulation analysis and model are 27.45%, 6.12%, 1.365%, and 3.27%, respectively. The optimization results show that the regression model can be used to predict thermal and structural properties of the panel, and the establishment of the model is effective. The analysis results show that the performances can be improved by 91.62%, 46.94%, 17.91%, and 10.28%, respectively. The optimized results are used for 3D metal printing, and the new type of solar panel is obtained. It is proved that the method can effectively improve the thermal and structural properties of the panel and can effectively shorten the development and manufacture cycle of the panel and also reduce the cost. It has high engineering application value.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2019/2846491</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>3-D printers ; Additive manufacturing ; Aerospace engineering ; Aluminum ; Composite materials ; Compressive strength ; Computer simulation ; Crack propagation ; Heat conductivity ; Honeycomb construction ; Load ; Metal forming ; Microsatellites ; Multiple objective analysis ; Optimization ; Parameters ; Performance enhancement ; Product design ; Properties (attributes) ; Regression analysis ; Regression models ; Shear strength ; Solar panels ; Stress concentration ; Temperature gradients ; Three dimensional printing ; Weight</subject><ispartof>International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-14</ispartof><rights>Copyright © 2019 L. Teng et al.</rights><rights>Copyright © 2019 L. Teng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83</citedby><cites>FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83</cites><orcidid>0000-0003-0329-5302 ; 0000-0003-2685-9844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2189480856/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2189480856?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><contributor>Damaren, Christopher J.</contributor><contributor>Christopher J Damaren</contributor><creatorcontrib>Teng, L.</creatorcontrib><creatorcontrib>Jin, Zh. H.</creatorcontrib><creatorcontrib>Zheng, X. D.</creatorcontrib><title>Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites</title><title>International journal of aerospace engineering</title><description>In this paper, a new method of replacing the conventional honeycomb aluminum panel with 3D metal printing on the microsatellite is presented. The multiobjective optimization method is used to optimize the temperature difference, compression strength, shear strength, and weight of the new type of solar panel structure. The relationships between the structural parameters and optimization targets are established, and the influence of five factors on thermal and structural properties is analyzed. Finally, a group of better structural parameters of the panel is obtained. The relative deviations between simulation analysis and model are 27.45%, 6.12%, 1.365%, and 3.27%, respectively. The optimization results show that the regression model can be used to predict thermal and structural properties of the panel, and the establishment of the model is effective. The analysis results show that the performances can be improved by 91.62%, 46.94%, 17.91%, and 10.28%, respectively. The optimized results are used for 3D metal printing, and the new type of solar panel is obtained. It is proved that the method can effectively improve the thermal and structural properties of the panel and can effectively shorten the development and manufacture cycle of the panel and also reduce the cost. It has high engineering application value.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Aerospace engineering</subject><subject>Aluminum</subject><subject>Composite materials</subject><subject>Compressive strength</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Heat conductivity</subject><subject>Honeycomb construction</subject><subject>Load</subject><subject>Metal forming</subject><subject>Microsatellites</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance enhancement</subject><subject>Product design</subject><subject>Properties (attributes)</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Shear strength</subject><subject>Solar panels</subject><subject>Stress concentration</subject><subject>Temperature gradients</subject><subject>Three dimensional printing</subject><subject>Weight</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkUlLBDEQhRtRcL15loBHHU3SWY8ibuAGLgcvobq7ohl6OmO6RfTXm7FFj55q4eO9Kl5RbDN6wJiUh5wye8iNUMKypWKNKaMn0mqx_NsrtVqs9_2UUkWllmvF0y0mH9MMuhrJzXwIs_AJQ4gdga4hj5iCD_W4iJ4AucZ3cv8xx8V0F1tI5BY6bEnWIFehTrGHAds2DNhvFise2h63fupG8XB6cn98Prm8Obs4Prqc1PmCYVIKpcEYrnOtUDbaYg2mVKzhshTcWjTe01qCrS2T1JbectGg0JqZSlWm3CguRt0mwtTNU5hB-nARgvtexPTsIA2hbtFV2UJRUFqIRlDOIdtKBqwyUgJFnbV2R615iq9v2A9uGt9Sl893nBkrDDVSZWp_pBb_9gn9ryujbpGEWyThfpLI-N6Iv4SugffwH70z0pgZ9PBHM6l4Br4AoD6P-Q</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Teng, L.</creator><creator>Jin, Zh. H.</creator><creator>Zheng, X. D.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0329-5302</orcidid><orcidid>https://orcid.org/0000-0003-2685-9844</orcidid></search><sort><creationdate>20190101</creationdate><title>Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites</title><author>Teng, L. ; Jin, Zh. H. ; Zheng, X. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Aerospace engineering</topic><topic>Aluminum</topic><topic>Composite materials</topic><topic>Compressive strength</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Heat conductivity</topic><topic>Honeycomb construction</topic><topic>Load</topic><topic>Metal forming</topic><topic>Microsatellites</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance enhancement</topic><topic>Product design</topic><topic>Properties (attributes)</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Shear strength</topic><topic>Solar panels</topic><topic>Stress concentration</topic><topic>Temperature gradients</topic><topic>Three dimensional printing</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teng, L.</creatorcontrib><creatorcontrib>Jin, Zh. H.</creatorcontrib><creatorcontrib>Zheng, X. D.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teng, L.</au><au>Jin, Zh. H.</au><au>Zheng, X. D.</au><au>Damaren, Christopher J.</au><au>Christopher J Damaren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>In this paper, a new method of replacing the conventional honeycomb aluminum panel with 3D metal printing on the microsatellite is presented. The multiobjective optimization method is used to optimize the temperature difference, compression strength, shear strength, and weight of the new type of solar panel structure. The relationships between the structural parameters and optimization targets are established, and the influence of five factors on thermal and structural properties is analyzed. Finally, a group of better structural parameters of the panel is obtained. The relative deviations between simulation analysis and model are 27.45%, 6.12%, 1.365%, and 3.27%, respectively. The optimization results show that the regression model can be used to predict thermal and structural properties of the panel, and the establishment of the model is effective. The analysis results show that the performances can be improved by 91.62%, 46.94%, 17.91%, and 10.28%, respectively. The optimized results are used for 3D metal printing, and the new type of solar panel is obtained. It is proved that the method can effectively improve the thermal and structural properties of the panel and can effectively shorten the development and manufacture cycle of the panel and also reduce the cost. It has high engineering application value.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/2846491</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0329-5302</orcidid><orcidid>https://orcid.org/0000-0003-2685-9844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5966
ispartof International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-14
issn 1687-5966
1687-5974
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b67b60a6744d4022a82751a1b855a0e7
source Wiley Online Library Open Access; Publicly Available Content Database
subjects 3-D printers
Additive manufacturing
Aerospace engineering
Aluminum
Composite materials
Compressive strength
Computer simulation
Crack propagation
Heat conductivity
Honeycomb construction
Load
Metal forming
Microsatellites
Multiple objective analysis
Optimization
Parameters
Performance enhancement
Product design
Properties (attributes)
Regression analysis
Regression models
Shear strength
Solar panels
Stress concentration
Temperature gradients
Three dimensional printing
Weight
title Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Optimization%20and%20Verification%20of%20a%20New%20Type%20of%20Solar%20Panel%20for%20Microsatellites&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Teng,%20L.&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2019/2846491&rft_dat=%3Cproquest_doaj_%3E2189480856%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-3467a8827467be5d79eca8361d2534299e8ff0c5a9c915093f924de47718b6b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2189480856&rft_id=info:pmid/&rfr_iscdi=true